论文标题

概率短期太阳能预测的高斯流程回归

Gaussian Process Regression for Probabilistic Short-term Solar Output Forecast

论文作者

Najibi, Fatemeh, Apostolopoulou, Dimitra, Alonso, Eduardo

论文摘要

随着气候变化的越来越关注,诸如光伏(PV)之类的可再生资源已成为能源发电的手段。通过准确的预测机制来解决其固有的间歇性和可变性,可以实现此类资源在电力系统操作中的平稳集成。本文提出了一个概率框架,以预测天气不确定性的短期PV输出。为此,我们利用包含功率输出和气象数据的数据集,例如辐照度,温度,天顶和方位角。首先,我们通过使用K-均值聚类将数据分为四组。接下来,进行相关研究以选择在更大程度上影响太阳能产出的天气特征。最后,我们通过使用高斯过程回归和Matern 5/2作为内核函数来确定将上述选定特征与太阳能输出相关联的函数。我们用不同位置的五个太阳能生成植物验证我们的方法,并将结果与​​现有方法进行比较。更具体地说,为了测试提出的模型,使用了两种不同的方法:(i)5倍交叉验证; (ii)将30天作为测试数据。为了确认模型的准确性,我们将框架应用于四个集群中的每个群体中的每个独立时间。平均误差遵循正态分布,置信度为95%,其值在-1.6%至1.4%之间。

With increasing concerns of climate change, renewable resources such as photovoltaic (PV) have gained popularity as a means of energy generation. The smooth integration of such resources in power system operations is enabled by accurate forecasting mechanisms that address their inherent intermittency and variability. This paper proposes a probabilistic framework to predict short-term PV output taking into account the uncertainty of weather. To this end, we make use of datasets that comprise of power output and meteorological data such as irradiance, temperature, zenith, and azimuth. First, we categorise the data into four groups based on solar output and time by using k-means clustering. Next, a correlation study is performed to choose the weather features which affect solar output to a greater extent. Finally, we determine a function that relates the aforementioned selected features with solar output by using Gaussian Process Regression and Matern 5/2 as a kernel function. We validate our method with five solar generation plants in different locations and compare the results with existing methodologies. More specifically, in order to test the proposed model, two different methods are used: (i) 5-fold cross-validation; and (ii) holding out 30 random days as test data. To confirm the model accuracy, we apply our framework 30 independent times on each of the four clusters. The average error follows a normal distribution, and with 95% confidence level, it takes values between -1.6% to 1.4%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源