论文标题

氧化物超级晶格中相变的紧急电场控制

Emergent electric field control of phase transformation in oxide superlattices

论文作者

Yi, Di, Wang, Yujia, Erve, Olaf M. J. van 't, Xu, Liubin, Yuan, Hongtao, Veit, Michael J., Balakrishnan, Purnima P., Choi, Yongseong, N'Diaye, Alpha T., Shafer, Padraic, Arenholz, Elke, Grutter, Alexander, Xu, Haixuan, Yu, Pu, Jonker, Berend T., Suzuki, Yuri

论文摘要

电场可以针对其结构和特性转换材料,从而实现从电池到Spintronics的各种应用。最近,电解门控可以产生大型电场和电压驱动的离子转移,已被确定为实现电场控制相变的强大手段。过渡金属氧化物(TMO)类别提供了许多潜在的候选物,这些候选物在电解门下表现出强烈的反应。但是,很少有人在室温下显示可逆的结构转换。在这里,我们报告了数字合成的TMO的实现,该TMO显示了室温下不同晶体之间的可逆,电场控制的转换。在由SRIRO3和LA0.2SR0.8MNO3的交替单位单元组成的超晶格中,我们发现了可逆的相变,具有7%的晶格变化,并且在化学,电子,电子,磁性和光学特性中具有7%的晶格变化,并由氧和氢离子的可逆传递介导。令人惊讶的是,在组成氧化物,实心溶液和更大的周期超晶格中,这种相变不存在。我们的发现为电压控制功能开辟了一类新的材料。

Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides (TMOs) provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized TMO that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up a new class of materials for voltage-controlled functionality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源