论文标题

互锁和可滑杆的轴对称板的力学

Mechanics of axisymmetric sheets of interlocking and slidable rods

论文作者

Riccobelli, D., Noselli, G., Arroyo, M., DeSimone, A.

论文摘要

在这项工作中,我们研究了受Euglenids颗粒启发的超材料板的力学。它们由可以沿着边缘自由滑动的互锁弹性杆组成。我们使用杆的特殊cosserat理论以及假设管状组件的轴对称变形来表征这些结构的运动学和力学。通过渐近扩张,我们研究了包含离散数量的杆的两个结构和由无限多杆组成的板的极限情况。我们将理论框架应用于轴向负载的存在下这些结构的稳定性。通过线性分析,我们计算离散和连续情况的关键屈曲力。对于后者,我们还进行了数值后弯曲后分析,研究了通过有限元仿真研究分叉化的非线性演变。

In this work, we study the mechanics of metamaterial sheets inspired by the pellicle of Euglenids. They are composed of interlocking elastic rods which can freely slide along their edges. We characterize the kinematics and the mechanics of these structures using the special Cosserat theory of rods and by assuming axisymmetric deformations of the tubular assembly. Through an asymptotic expansion, we investigate both structures that comprise a discrete number of rods and the limit case of a sheet composed by infinitely many rods. We apply our theoretical framework to investigate the stability of these structures in the presence of an axial load. Through a linear analysis, we compute the critical buckling force for both the discrete and the continuous case. For the latter, we also perform a numerical post-buckling analysis, studying the non-linear evolution of the bifurcation through finite elements simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源