论文标题

抽象片段生成

Abstractive Snippet Generation

论文作者

Chen, Wei-Fan, Syed, Shahbaz, Stein, Benno, Hagen, Matthias, Potthast, Martin

论文摘要

抽象片段是最初创建的文本,用于汇总搜索引擎结果页面上的网页。与传统的提取片段相比,这些片段是通过从网页上逐字提取短语和句子而生成的,抽象片段规避版权问题;更有趣的是,他们打开了个性化大门。在用户接受和表达性方面,抽象片段的评估同样强大 - 但关键问题仍然存在:抽象片段可以自动以足够的质量生成吗? 本文介绍了一种用于抽象片段生成的新方法:我们确定了前两个大规模来源,即远处监督,即锚定上下文和Web目录。 By mining the entire ClueWeb09 and ClueWeb12 for anchor contexts and by utilizing the DMOZ Open Directory Project, we compile the Webis Abstractive Snippet Corpus 2020, comprising more than 3.5 million triples of the form $\langle$query, snippet, document$\rangle$ as training examples, where the snippet is either an anchor context or a web directory description in lieu of a genuine Web文档的查询偏见的抽象片段。我们提出了一个双向抽象片段生成模型,并通过标准措施,众包和与最新状态相比,评估了我们的语料库和生成的抽象片段的质量。评估表明,我们的新型数据源以及所提出的模型允许生成可用的查询偏见的抽象片段,同时最大程度地减少文本重用。

An abstractive snippet is an originally created piece of text to summarize a web page on a search engine results page. Compared to the conventional extractive snippets, which are generated by extracting phrases and sentences verbatim from a web page, abstractive snippets circumvent copyright issues; even more interesting is the fact that they open the door for personalization. Abstractive snippets have been evaluated as equally powerful in terms of user acceptance and expressiveness---but the key question remains: Can abstractive snippets be automatically generated with sufficient quality? This paper introduces a new approach to abstractive snippet generation: We identify the first two large-scale sources for distant supervision, namely anchor contexts and web directories. By mining the entire ClueWeb09 and ClueWeb12 for anchor contexts and by utilizing the DMOZ Open Directory Project, we compile the Webis Abstractive Snippet Corpus 2020, comprising more than 3.5 million triples of the form $\langle$query, snippet, document$\rangle$ as training examples, where the snippet is either an anchor context or a web directory description in lieu of a genuine query-biased abstractive snippet of the web document. We propose a bidirectional abstractive snippet generation model and assess the quality of both our corpus and the generated abstractive snippets with standard measures, crowdsourcing, and in comparison to the state of the art. The evaluation shows that our novel data sources along with the proposed model allow for producing usable query-biased abstractive snippets while minimizing text reuse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源