论文标题

高级箭袋的浮子理论3倍

Floer theory of higher rank quiver 3-folds

论文作者

Smith, Ivan

论文摘要

我们在曲线$ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s $ fibred中研究。 $ s $的理想三角剖分定义,对于每个等级$ m $,Quiver $ Q(δ_M)$,因此,$ cy_3 $ -category $(c,w)$(c,w)$ in $ q(Δ_M)$上的任何潜在$ W $。我们表明,对于$ω$,在kähler锥的一个开放子集中,$(y,ω)$的标志性fukaya类别的子类别是Quasi is-Isomorphic,to $(c,w _ {[ω]})$,对于某些通用的潜在$ w _ {[ω] {[ω]} $。这部分建立了Goncharov的猜想,涉及框架上$ pgl_ {m+1} $的群集品种的“分类” - $ s $上的本地系统,并给出了Gaiotto,Moore,Moore和Neitzke结果的符合性几何观点。

We study threefolds $Y$ fibred by $A_m$-surfaces over a curve $S$ of positive genus. An ideal triangulation of $S$ defines, for each rank $m$, a quiver $Q(Δ_m)$, hence a $CY_3$-category $(C,W)$ for any potential $W$ on $Q(Δ_m)$. We show that for $ω$ in an open subset of the Kähler cone, a subcategory of a sign-twisted Fukaya category of $(Y,ω)$ is quasi-isomorphic to $(C,W_{[ω]})$ for a certain generic potential $W_{[ω]}$. This partially establishes a conjecture of Goncharov concerning `categorifications' of cluster varieties of framed $PGL_{m+1}$-local systems on $S$, and gives a symplectic geometric viewpoint on results of Gaiotto, Moore and Neitzke.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源