论文标题
具有基于度距离的随机图的矩阵的能量的渐近值
The asymptotic value of energy for matrices with degree-distance-based entries of random graphs
论文作者
论文摘要
对于图$ g =(v,e)$和$ i,j \ in v $,表示$ i $和$ j $ in $ g $ by $ d(i,j)$和$ i $,$ j $ by $ d_i $,$ d_j $之间的距离。令$ f(d(i,j),d_ {i},d_ {j})$为$ i $和$ j $的函数对称。定义一个矩阵$ w_f(g)$,称为$ g $的加权距离矩阵,带有$ ij $ -entry $ w_f(g)(g)(i,j)= f(d(i,j),d_ {i},d_ {i},d_ {j}),如果$ i \ i \ i \ neq j $ and $ w_f(j $ w_f(j)$ if(if)在本文中,我们证明,如果对称函数$ f $满足$ f(d(i,j),(1+o(1))np,(1+o(1))np)=(1+o(1+o(1))f(d(i,j),j),np,np,np,np,np,np,np)$,那么几乎所有图形$ g_p $ $ erd \ ddot {o} s $ - $ r \ acute {e} nyi $随机图模型$ \ mathcal {g} _ {n,p} $,$ w_f(g_p)$的能量$ \ {(\ frac {8} {3π} \ sqrt {p(1-p)}+o(1))\ cdot | f(1,np,np,np)-f(2,np,np,np,np,np)|+o(|结果,我们给出了各种加权距离矩阵的能量的渐近值,功能$ f $仅是基于距离的,并与基于学位距离的化学使用的拓扑指数混合。这仅以基于学位的权重来概括我们以前的结果。
For a graph $G=(V, E)$ and $i, j\in V$, denote the distance between $i$ and $j$ in $G$ by $D(i, j)$ and the degrees of $i$, $j$ by $d_i$, $d_j$, respectively. Let $f(D(i, j), d_{i}, d_{j})$ be a function symmetric in $i$ and $j$. Define a matrix $W_f(G)$, called the weighted distance matrix, of $G$, with the $ij$-entry $W_f(G)(i, j)=f(D(i, j), d_{i}, d_{j})$ if $i\neq j$ and $W_f(G)(i, j)=0$ if $i=j$. In this paper, we prove that if the symmetric function $f$ satisfies that $f(D(i, j), (1+o(1))np, (1+o(1))np)=(1+o(1))f(D(i, j), np, np)$, then for almost all graphs $G_p$ in the $Erd\ddot{o}s$-$R\acute{e}nyi$ random graph model $\mathcal{G}_{n, p}$, the energy of $W_f(G_p)$ is $\{(\frac{8}{3π}\sqrt{p(1-p)}+o(1))\cdot|f(1, np, np)-f(2, np, np)|+o(|f(2, np, np)|)\}\cdot n^{3/2}$. As a consequence, we give the asymptotic values of energies of a variety of weighted distance matrices with function $f$ from distance-based only and mixed with degree-distance-based topological indices of chemical use. This generalizes our former result with only degree-based weights.