论文标题
几何量子量子的动力脱钩
Dynamical decoupling of a geometric qubit
论文作者
论文摘要
量子位或Qubits自然会与无法控制的环境纠缠在一起。因此,需要定期逆转量子底座,因此需要动态的脱钩才能从环境中解散Qubits,但这会导致旋转误差积累。尽管在SU(2)的两级系统中旋转了常规的量子,但在V形SU的退化子空间中定义的几何值(3)三级系统是通过第三个辅助水平旋转的,以获取几何相。我们在这里证明,仅通过引入引人入胜,就可以使钻石中的氮散布中心中的几何量子值在钻石中的自旋三胞胎电子上的动态解耦,以自发抑制误差的积累。几何动力学解耦将几何量子值的相干时间延长至1.9毫秒,受放松时间的限制,在室温下有128个脱钩门。我们的技术为全体量子记忆打开了一条途径,用于在需要顺序操作的各种量子应用中使用
Quantum bits or qubits naturally decohere by becoming entangled with uncontrollable environments. Dynamical decoupling is thereby required to disentangle qubits from an environment by periodically reversing the qubit bases, but this causes rotation error to accumulate. Whereas a conventional qubit is rotated within the SU(2) two-level system, a geometric qubit defined in the degenerate subspace of a V-shaped SU(3) three-level system is geometrically rotated via the third ancillary level to acquire a geometric phase. We here demonstrate that, simply by introducing detuning, the dynamical decoupling of the geometric qubit on a spin triplet electron in a nitrogen-vacancy center in diamond can be made to spontaneously suppress error accumulation. The geometric dynamical decoupling extends the coherence time of the geometric qubit up to 1.9 ms, limited by the relaxation time, with 128 decoupling gates at room temperature. Our technique opens a route to holonomic quantum memory for use in various quantum applications requiring sequential operations