论文标题
通用能量准确性的折衷在非平衡的细胞传感
Universal energy-accuracy tradeoffs in nonequilibrium cellular sensing
论文作者
论文摘要
我们将随机热力学,大偏差理论和信息理论结合起来,以获得基本限制,以估计外部浓度的精度。正如预期的那样,如果对整个受体状态轨迹的理想观察者进行估计,则没有消耗非平衡受体的能量可以分为结合和未结合的状态可以胜过平衡的两态受体。但是,当一个简单的观察者进行估计,该观察者衡量受体绑定的时间的比例时,我们将获得对一般非平衡受体的准确性的基本限制,这是能量消耗的函数。我们进一步得出并利用显式公式,以在数值上估计准确性和能量之间的帕累托最佳折衷。我们发现,可以通过不一致的环受体来实现这种权衡,这些环必定会随着能量而增加。我们的结果产生了一种新型的热力学不确定性关系,这是一个物理系统在各州池中花费的时间,并概括了经典的1977年Berg-Purcell沿多个维度的细胞传感的限制。
We combine stochastic thermodynamics, large deviation theory, and information theory to derive fundamental limits on the accuracy with which single cell receptors can estimate external concentrations. As expected, if estimation is performed by an ideal observer of the entire trajectory of receptor states, then no energy consuming non-equilibrium receptor that can be divided into bound and unbound states can outperform an equilibrium two-state receptor. However, when estimation is performed by a simple observer that measures the fraction of time the receptor is bound, we derive a fundamental limit on the accuracy of general nonequilibrium receptors as a function of energy consumption. We further derive and exploit explicit formulas to numerically estimate a Pareto-optimal tradeoff between accuracy and energy. We find this tradeoff can be achieved by nonuniform ring receptors with a number of states that necessarily increases with energy. Our results yield a novel thermodynamic uncertainty relation for the time a physical system spends in a pool of states, and generalize the classic 1977 Berg-Purcell limit on cellular sensing along multiple dimensions.