论文标题
$ sl(n,p)$的Cayley图的直径,带有包含转子的生成集
Diameter of Cayley graphs of $SL(n,p)$ with generating sets containing a transvection
论文作者
论文摘要
Babai的一个众所周知的猜想指出,如果$ g $是有限的简单组,而$ x $是$ g $的生成集,那么Cayley Graph $ cay(g,x)$的直径在上面由$(\ log | g |)^c $用于某些绝对常数$ c $。本文的目的是证明每当$ g = sl(n,p)$和$ x $的$ cay(g,x)$的直径是限制的。对于$ g = sl(n,k)$,也证明了这种结果的自然类似物,其中$ k $可以是任何字段。
A well-known conjecture of Babai states that if $G$ is a finite simple group and $X$ is a generating set of $G$, then the diameter of the Cayley graph $Cay(G,X)$ is bounded above by $(\log |G|)^c$ for some absolute constant $c$. The goal of this paper is to prove such a bound for the diameter of $Cay(G,X)$ whenever $G=SL(n,p)$ and $X$ is a generating set of $G$ which contains a transvection. A natural analogue of this result is also proved for $G=SL(n,K)$, where $K$ can be any field.