论文标题

隐私验证团体会员资格验证:稀疏还是密集?

Group Membership Verification with Privacy: Sparse or Dense?

论文作者

Gheisari, Marzieh, Furon, Teddy, Amsaleg, Laurent

论文摘要

小组成员验证检查生物特征性状是否对应于组的一个成员,而不揭示该成员的身份。最近的贡献通过联合使用两种机制为小组成员协议提供了隐私:将模板量化为离散嵌入,并将几个模板汇总为一个组表示。但是,该方案有一个缺点:代表组的数据结构的大小有限,当汇总许多模板时无法识别嘈杂的查询。此外,嵌入的稀疏性似乎在性能验证中起着至关重要的作用。本文提出了一个用于小组成员验证的数学模型,允许揭示稀疏对安全性,紧凑性和验证性能的影响。该模型将缝隙桥接到Bloom Filter稳健的噪音查询。它表明,除非查询几乎没有噪音,否则密集的解决方案更具竞争力。

Group membership verification checks if a biometric trait corresponds to one member of a group without revealing the identity of that member. Recent contributions provide privacy for group membership protocols through the joint use of two mechanisms: quantizing templates into discrete embeddings and aggregating several templates into one group representation. However, this scheme has one drawback: the data structure representing the group has a limited size and cannot recognize noisy queries when many templates are aggregated. Moreover, the sparsity of the embeddings seemingly plays a crucial role on the performance verification. This paper proposes a mathematical model for group membership verification allowing to reveal the impact of sparsity on both security, compactness, and verification performances. This model bridges the gap towards a Bloom filter robust to noisy queries. It shows that a dense solution is more competitive unless the queries are almost noiseless.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源