论文标题
对淋巴结半度的最小电导率校正
Disorder correction to the minimal conductance of a nodal-point semimetal
论文作者
论文摘要
我们考虑了疾病诱导的校正,以对各向异性二维dirac节点或三维WEYL节点的最小电导率。在二阶扰动理论中,通过任意潜在的校正$ΔG$得出了有限大小样本的电导的分析表达。考虑到短期疾病潜力的通用模型,该结果用于计算概率分布$ p(ΔG)$,该模型与使用散射矩阵方法获得的数值精确分布进行了比较。我们表明,当样本具有较大的宽度比率时,$ p(ΔG)$是高斯,并研究了期望值,标准偏差以及查找$ΔG<0 $的可能性取决于分散体的各向异性。
We consider the disorder-induced correction to the minimal conductance of an anisotropic two-dimensional Dirac node or a three-dimensional Weyl node. An analytical expression is derived for the correction $δG$ to the conductance of a finite-size sample by an arbitrary potential, without taking the disorder average, in second-order perturbation theory. Considering a generic model of a short-range disorder potential, this result is used to compute the probability distribution $P(δG)$, which is compared to the numerically exact distribution obtained using the scattering matrix approach. We show that $P(δG)$ is Gaussian when the sample has a large width-to-length ratio, and study how the expectation value, the standard deviation, and the probability of finding $δG < 0$ depend on the anisotropy of the dispersion.