论文标题
螺旋波:线性和非线性理论
Spiral waves: linear and nonlinear theory
论文作者
论文摘要
螺旋波是醒目的自组织相干结构,在耗散性,空间扩展系统中组织时空动力学。在本文中,我们为螺旋波的各种特性提供了一种概念方法。我们没有研究特定方程中的存在,而是研究一般反应扩散系统中螺旋波的性质。我们表明,螺旋波的许多特征是强大的,并且在某种程度上与所分析的特定模型无关。为此,我们提出了一个合适的分析框架,即空间径向动力学,使我们能够严格地表征诸如螺旋波及其本征函数的形状,线性化的特性和有限尺寸效应。我们认为,我们的框架也可以用于进一步研究螺旋波并有助于分析分叉,并为实验和数值模拟提供指导和预测。从技术的角度来看,我们引入了非标准函数空间,以实现存在问题的适当性,这使我们能够使用动态系统技术,尤其是指数二分法来理解螺旋波的性质。使用这些重点方法,我们能够从分析一维相干结构(例如前部和脉冲)中带来工具,以在这些固有的二维缺陷上携带。
Spiral waves are striking self-organized coherent structures that organize spatio-temporal dynamics in dissipative, spatially extended systems. In this paper, we provide a conceptual approach to various properties of spiral waves. Rather than studying existence in a specific equation, we study properties of spiral waves in general reaction-diffusion systems. We show that many features of spiral waves are robust and to some extent independent of the specific model analyzed. To accomplish this, we present a suitable analytic framework, spatial radial dynamics, that allows us to rigorously characterize features such as the shape of spiral waves and their eigenfunctions, properties of the linearization, and finite-size effects. We believe that our framework can also be used to study spiral waves further and help analyze bifurcations, as well as provide guidance and predictions for experiments and numerical simulations. From a technical point of view, we introduce non-standard function spaces for the well-posedness of the existence problem which allow us to understand properties of spiral waves using dynamical systems techniques, in particular exponential dichotomies. Using these pointwise methods, we are able to bring tools from the analysis of one-dimensional coherent structures such as fronts and pulses to bear on these inherently two-dimensional defects.