论文标题

Hrank:使用高级功能图的过滤器修剪

HRank: Filter Pruning using High-Rank Feature Map

论文作者

Lin, Mingbao, Ji, Rongrong, Wang, Yan, Zhang, Yichen, Zhang, Baochang, Tian, Yonghong, Shao, Ling

论文摘要

神经网络修剪为促进在资源有限的设备上部署深层神经网络提供了有希望的前景。但是,由于缺少非偏好网络组件的理论指导,现有方法仍受到修剪设计效率低下和劳动力成本的挑战。在本文中,我们通过探索高级特征图(Hrank)提出了一种新型的过滤器修剪方法。我们的Hrank的灵感来自于发现单个过滤器生成的多个特征映射的平均等级始终是相同的,无论CNN的图像批次数量如何。基于Hrank,我们开发了一种数学配制的方法,可用于使用低级别特征图的修剪过滤器。我们修剪背后的原理是,低级别特征地图包含更少的信息,因此可以轻松地再现修剪结果。此外,我们在实验上表明,具有高级特征地图的权重包含更重要的信息,以便即使部分没有更新,也不会对模型性能造成很少的损害。在不引入任何其他约束的情况下,Hrank在减少拖鞋和参数方面对最先进的方案进行了显着改善,其精度相似。例如,使用RESNET-110,我们通过去除59.2%的参数来实现58.2%的降低,而CIFAR-10的TOP-1准确性仅损失0.14%。使用RES-50,我们通过删除参数的36.7%来减少43.8%的流量,而ImageNet的TOP-1精度仅损失1.17%。这些代码可以在https://github.com/lmbxmu/hrank上找到。

Neural network pruning offers a promising prospect to facilitate deploying deep neural networks on resource-limited devices. However, existing methods are still challenged by the training inefficiency and labor cost in pruning designs, due to missing theoretical guidance of non-salient network components. In this paper, we propose a novel filter pruning method by exploring the High Rank of feature maps (HRank). Our HRank is inspired by the discovery that the average rank of multiple feature maps generated by a single filter is always the same, regardless of the number of image batches CNNs receive. Based on HRank, we develop a method that is mathematically formulated to prune filters with low-rank feature maps. The principle behind our pruning is that low-rank feature maps contain less information, and thus pruned results can be easily reproduced. Besides, we experimentally show that weights with high-rank feature maps contain more important information, such that even when a portion is not updated, very little damage would be done to the model performance. Without introducing any additional constraints, HRank leads to significant improvements over the state-of-the-arts in terms of FLOPs and parameters reduction, with similar accuracies. For example, with ResNet-110, we achieve a 58.2%-FLOPs reduction by removing 59.2% of the parameters, with only a small loss of 0.14% in top-1 accuracy on CIFAR-10. With Res-50, we achieve a 43.8%-FLOPs reduction by removing 36.7% of the parameters, with only a loss of 1.17% in the top-1 accuracy on ImageNet. The codes can be available at https://github.com/lmbxmu/HRank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源