论文标题
使用多色调正弦频率调制的自适应发送波形设计
Adaptive Transmit Waveform Design using Multi-Tone Sinusoidal Frequency Modulation
论文作者
论文摘要
本文使用多色调正弦频率调制(MTSFM)提出了一种自适应波形设计方法。 MTSFM波形的调制函数表示为有限的傅立叶级数扩展。傅立叶系数被用作一个离散的设计参数集,可以修改以调整波形的属性。调整MTSFM的设计参数以塑造波形的光谱,自动相关函数(ACF)和歧义函数(AF)形状。 MTSFM波形模型自然具有恒定的包膜和频谱紧凑的波形,使其非常适合在使用高功率放大器的实用雷达/声纳发射器上传输。 MTSFM使用通用的Bessel函数对其时间序列具有精确的数学定义,该函数允许为其光谱,AF和ACF得出封闭形式的分析表达式。这些表达式允许建立明确定义的优化问题,从而使MTSFM的性质细微调整。通过优化最初具有“ Thumbtack样” AF形状的MTSFM波形来证明这种自适应波形设计模型。所得优化的设计具有与范围多普勒平面中指定区域相比,没有增加初始化波形所具有的时间带宽产品(TBP)。仿真还表明,优化的Thumbtack样MTSFM波形具有竞争性的,与Thumbtack样相位编码的波形竞争,这些波形从已发表的文献中可用的设计算法得出。
This paper presents an adaptive waveform design method using Multi-Tone Sinusoidal Frequency Modulation (MTSFM). The MTSFM waveform's modulation function is represented as a finite Fourier series expansion. The Fourier coefficients are utilized as a discrete set of design parameters that may be modified to adapt the waveform's properties. The MTSFM's design parameters are adjusted to shape the spectrum, Auto-Correlation Function (ACF), and Ambiguity Function (AF) shapes of the waveform. The MTSFM waveform model naturally possesses the constant envelope and spectrally compact waveforms that make it well suited for transmission on practical radar/sonar transmitters which utilize high power amplifiers. The MTSFM has an exact mathematical definition for its time-series using Generalized Bessel Functions which allow for deriving closed-form analytical expressions for its spectrum, AF, and ACF. These expressions allow for establishing well-defined optimization problems that finely tune the MTSFM's properties. This adaptive waveform design model is demonstrated by optimizing MTSFM waveforms that initially possess a "thumbtack-like" AF shape. The resulting optimized designs possess substantially improved sidelobe levels over specified regions in the range-Doppler plane without increasing the Time-Bandwidth Product (TBP) that the initialized waveforms possessed. Simulations additionally demonstrate that the optimized thumbtack-like MTSFM waveforms are competitive with thumbtack-like phase-coded waveforms derived from design algorithms available in the published literature.