论文标题
平行集团计数和剥离算法
Parallel Clique Counting and Peeling Algorithms
论文作者
论文摘要
我们提出了一种新的并行算法,用于$ k $ clique的计数/列表,该算法具有pologrogarithmic跨度(并行时间),并且是工作效率的(匹配稀疏图最佳顺序算法的工作)。我们的算法基于计算低度方向的计算,我们介绍了用于并行计算的新线性工作和polygarithmic-Span算法。我们还提出了新的并行算法,用于使用图形稀疏性产生集体计数的无偏估计。最后,我们设计了两个新的并行工作算法,用于近似于$ k $ clique cligest Ext子图,其中第一个是$ 1/k $ - approximation,第二个是$ 1/(k(1+ε)$ - 近似值且具有polyrogarithmic span。我们的第一个算法没有pologrogarithmic跨度,但是我们证明它可以解决P完整问题。 除了理论结果外,我们还实施了算法并提出了各种优化以提高其实际性能。在带有双向超线程的30核机上,我们的算法分别达到13.23---38.99x和1.19--13.76x的自相关平行加速,分别为$ k $ -clique计数和$ k $ clique-clique-clique-clique cliquique clique cliencest exteast estest graph。与最先进的$ k $ clique计数算法相比,我们达到了高达9.88倍的速度,并且与现有的$ k $ -clique clique cligeStest子图相比,我们实现了高达11.83倍的速度。我们能够在最大的公共图表上计算出$ 4 $ clique的计数,该图是第一次超过2000亿个边缘。
We present a new parallel algorithm for $k$-clique counting/listing that has polylogarithmic span (parallel time) and is work-efficient (matches the work of the best sequential algorithm) for sparse graphs. Our algorithm is based on computing low out-degree orientations, which we present new linear-work and polylogarithmic-span algorithms for computing in parallel. We also present new parallel algorithms for producing unbiased estimations of clique counts using graph sparsification. Finally, we design two new parallel work-efficient algorithms for approximating the $k$-clique densest subgraph, the first of which is a $1/k$-approximation and the second of which is a $1/(k(1+ε))$-approximation and has polylogarithmic span. Our first algorithm does not have polylogarithmic span, but we prove that it solves a P-complete problem. In addition to the theoretical results, we also implement the algorithms and propose various optimizations to improve their practical performance. On a 30-core machine with two-way hyper-threading, our algorithms achieve 13.23--38.99x and 1.19--13.76x self-relative parallel speedup for $k$-clique counting and $k$-clique densest subgraph, respectively. Compared to the state-of-the-art parallel $k$-clique counting algorithms, we achieve up to 9.88x speedup, and compared to existing implementations of $k$-clique densest subgraph, we achieve up to 11.83x speedup. We are able to compute the $4$-clique counts on the largest publicly-available graph with over two hundred billion edges for the first time.