论文标题
相互作用的持续自旋螺旋状态的相图
Phase diagram of the interacting persistent spin-helix state
论文作者
论文摘要
我们研究具有相同RASHBA和Dresselhaus Spin-Orbit耦合的相互作用二维电子气体(2DEG)的相图,对于弱耦合而言,这会产生众所周知的持续旋转螺旋相。我们使用类似于Phys.Rev.B 96,235425(2017)的经典蒙特卡洛法构建完整的Hartree fock相图。对于只有Rashba旋转轨耦合的2DEG,发现在Wigner-Seitz Radius RS的中间值下,系统的特征是单个费米表面具有平面旋转极化的单个费米表面,而在RS稍大的RS值中,它会经历带有移动的Fermi表面和fermi表面和植物旋转式旋转式旋转偏光的状态。各种相变是一流的,这在平面偏光相中的电导率和各向异性电阻的电导率和外观中出现。在这项工作中,我们表明,随着Dresselhaus旋转轨道相互作用的强度增加,平面外旋转的区域会收缩,并且当Rashba和Rashba和Dresselhaus Spinelhaus Spin-Orbit耦合强度相等时,完全消失了。在这一点上,可以将系统映射到无自旋轨道耦合的情况下,并且这种转换揭示了一个平面内旋转相位的相位,其单个位移的Fermi表面超过Rs> 2.01。经典蒙特卡洛模拟证实了这一点。我们讨论了新阶段的实验观察和有用的应用,以及使用经典蒙特卡洛方法的警告。
We study the phase diagram of the interacting two-dimensional electron gas (2DEG) with equal Rashba and Dresselhaus spin-orbit coupling, which for weak coupling gives rise to the well-known persistent spin-helix phase. We construct the full Hartree-Fock phase diagram using a classical Monte-Carlo method analogous to that used in Phys.Rev.B 96, 235425 (2017). For the 2DEG with only Rashba spin-orbit coupling, it was found that at intermediate values of the Wigner-Seitz radius rs the system is characterized by a single Fermi surface with an out-of-plane spin polarization, while at slightly larger values of rs it undergoes a transition to a state with a shifted Fermi surface and an in-plane spin polarization. The various phase transitions are first-order, and this shows up in discontinuities in the conductivity and the appearance of anisotropic resistance in the in-plane polarized phase. In this work, we show that the out-of-plane spin-polarized region shrinks as the strength of the Dresselhaus spin-orbit interaction increases, and entirely vanishes when the Rashba and Dresselhaus spin-orbit coupling strengths are equal. At this point, the system can be mapped onto a 2DEG without spin-orbit coupling, and this transformation reveals the existence of an in-plane spin-polarized phase with a single, displaced Fermi surface beyond rs > 2.01. This is confirmed by classical Monte-Carlo simulations. We discuss experimental observation and useful applications of the novel phase, as well as caveats of using the classical Monte-Carlo method.