论文标题

网络聚类通过内核-Arma建模和Grassmannian脑网案例

Network Clustering Via Kernel-ARMA Modeling and the Grassmannian The Brain-Network Case

论文作者

Ye, Cong, Slavakis, Konstantinos, Patil, Pratik V., Nakuci, Johan, Muldoon, Sarah F., Medaglia, John

论文摘要

本文为带有时间序列数据注释的节点的网络引入了聚类框架。该框架解决了所有类型的网络聚类问题:状态聚类,状态内的节点聚类(又称拓扑识别或社区检测),甚至子网 - 状态 - 状态序列标识/跟踪。通过自下而上的方法,首先,通过内核自动回归运动平均建模从原始的节点时间序列数据中提取功能,以揭示非线性依赖性和低级别表示,然后映射到Grassmann歧管(Grassmannian)上。所有聚类任务都是通过以新颖的方式利用格拉斯曼尼亚人的基础riemannian几何形状来执行的。为了验证所提出的框架,考虑了大脑网络聚类,其中对合成和实际功能磁共振成像(fMRI)数据进行了广泛的数值测试(fMRI)数据表明,主张的学习框架比较有利与几种最新的群集集群方案进行比较。

This paper introduces a clustering framework for networks with nodes annotated with time-series data. The framework addresses all types of network-clustering problems: State clustering, node clustering within states (a.k.a. topology identification or community detection), and even subnetwork-state-sequence identification/tracking. Via a bottom-up approach, features are first extracted from the raw nodal time-series data by kernel autoregressive-moving-average modeling to reveal non-linear dependencies and low-rank representations, and then mapped onto the Grassmann manifold (Grassmannian). All clustering tasks are performed by leveraging the underlying Riemannian geometry of the Grassmannian in a novel way. To validate the proposed framework, brain-network clustering is considered, where extensive numerical tests on synthetic and real functional magnetic resonance imaging (fMRI) data demonstrate that the advocated learning framework compares favorably versus several state-of-the-art clustering schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源