论文标题

关于迭代的对数定律和随机几何形状中强的不变性原则

On the law of the iterated logarithm and strong invariance principles in stochastic geometry

论文作者

Krebs, Johannes

论文摘要

我们研究了迭代对数的定律(Khinchin(1924),Kolmogorov(1929))和相关的随机几何形状中相关的强不变性原理。作为潜在的应用,我们考虑了众所周知的功能,例如在$ k $ neart的邻居图上定义的功能和拓扑数据分析中的重要功能,例如Euler特征和持续的Betti数字。

We study the law of the iterated logarithm (Khinchin (1924), Kolmogorov (1929)) and related strong invariance principles in stochastic geometry. As potential applications, we think of well-known functionals such as functionals defined on the $k$-nearest neighbors graph and important functionals in topological data analysis such as the Euler characteristic and persistent Betti numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源