论文标题
猫(1)空间的短缩
Short retractions of CAT(1) spaces
论文作者
论文摘要
我们构造了猫(1)空间的短缩式缩回到其小凸子集中。该结构提供了Wilfrid Kendall引入的分析工具的替代几何描述。 我们的构造使用曲线状流,可以将其定义为某些类型功能系列的梯度流。在附录中,我们证明了与时间相关的局部Lipschitz半循环函数的梯度流有关的一般存在,这是独立关注的。
We construct short retractions of a CAT(1) space to its small convex subsets. This construction provides an alternative geometric description of an analytic tool introduced by Wilfrid Kendall. Our construction uses a tractrix flow which can be defined as a gradient flow for a family of functions of certain type. In an appendix we prove a general existence result for gradient flows of time-dependent locally Lipschitz semiconcave functions, which is of independent interest.