论文标题
长寿命激子在强耦合分子极化子的动力学中的作用
The Role of Long-lived Excitons in the Dynamics of Strongly Coupled Molecular Polaritons
论文作者
论文摘要
在强烈耦合的激子 - 波利顿系统中修改分子动力学的概念是光子学中的一个新兴主题,因为它有可能生产具有量身定制的光物理特性的定制化学系统。但是,在实现此类系统之前,必须解决有关激子 - 波利孔和化学系统中局部激发态之间电子相互作用的性质和强度的开放问题,以及测量此类相互作用的正确方法。在这里,我们使用瞬态光谱法研究了分子单元裂变系统中激子,单元激子和三重态激子之间的动态相互作用,该系统与光学微腔密切相关。我们确定一些主要局限性,以修改强耦合方案中的分子动力学。来自未偶联分子的耦合分子和激子的腔体极化子和“储层”状态的同时激发,被定义为深色极化子和深色激发量(例如三胞胎),总是发生。此外,从储层状态到腔极化的缓慢转化导致整体种群动态变化最小。此外,我们证明了如何除了通常的种群动力学外,微腔的瞬时光学测量结果揭示了由于分子激发态和激子 - 光子量耦合条件的变化而导致的激子 - 波利顿过渡能量的修饰。由于储层状态与空腔极性子之间的相互作用弱,因此需要出色的设计注意事项才能实现改进的化学动力学,因此需要使用具有较长兴奋状态的分子系统或需要少量分子的强烈耦合方法。
The concept of modifying molecular dynamics in strongly coupled exciton-polariton systems is an emerging topic in photonics due to its potential to produce customized chemical systems with tailored photophysical properties. However, before such systems can be realized, it is essential to address the open questions concerning the nature and strength of electronic interactions between exciton-polaritons and localized excited states in chemical system as well as the proper way to measure such interactions. Here, we use transient optical spectroscopy to investigate dynamical interactions between exciton-polaritons, singlet excitons, and triplet excitons in a molecular singlet fission system that is strongly coupled to an optical microcavity. We identify some of the major limitations to modify molecular dynamics in the strong coupling regime. Simultaneous excitation of cavity polaritons and 'reservoir' states, defined as dark polaritons and dark excitons (e.g. triplets) from coupled molecules and excitons from uncoupled molecules, always occurs. In addition, slow conversion from reservoir states to cavity polaritons results in minimal changes to the overall population dynamics. Furthermore, we demonstrate how in addition to the usual population dynamics, transient optical measurements on microcavities reveal information pertaining to modification of the exciton-polariton transition energies due to changes in the population of molecular excited states and the exciton-photon coupling conditions. As a consequence of weak interactions between reservoir states and cavity polaritons, judicious design considerations are required to achieve modified chemical dynamics, necessitating the use of molecular systems with long excited-state lifetimes or strong coupling approaches that require a small number of molecules.