论文标题
$(α,β)$ - 超级进程和分数非线性PDE的奇异解决方案的密度
The density of the $(α,β)$-superprocess and singular solutions to a fractional non-linear PDE
论文作者
论文摘要
我们考虑关键$(α,β)$的密度$ x_t(x)$ - $ r^d $ in $ r^d $,$α\ in(0,2)$和$β<\fracαd$。 PDE的最新结果暗示着密度的二分法:对于固定的$ x $,$ x_t(x)> 0 $ a.s.在$ \ {x_t \ neq 0 \} $上,仅当$β\ leqβ^*(α)= \fracα{d+α} $时,才。我们加强了这一点,并表明在连续密度状态下,$β<β^*(α)$意味着密度函数严格呈阳性A.S.在$ \ {x_t \ neq 0 \} $上。 然后,我们在$μ$上给出接近尖锐的条件,以使$μ(x_t):= \ int x_t(x)μ(dx)> 0 $ a.s.在$ \ {x_t \ neq 0 \} $上。我们的表征是基于$ supp(μ)$的大小,从Hausdorff度量和尺寸的意义上讲。对于$ s \ in [0,d] $,如果$β\ leqβ^*(α,s)= \fracα{d-s+α} $和$ supp(μ)$具有正$ x^s $ -hausdorff量,则是$μ(x_t)> 0 $ A.S.在$ \ {x_t \ neq 0 \} $上;当$β>β^*(α,s)$时,如果$μ$满足均匀的较低密度条件,则暗示$ dim(supp(μ))<s $,则$ p(μ(x_t)= 0 | x_t \ neq 0)> 0 $。 我们还为分数PDE $ \ partial_t u(t,x)= - ( - δ)^{α/2} u(t,x)-u(t,x)-u(t,x)^{1+β} $带有域$(t,x)解决方案$ u_t(x)$的初始痕迹是一对$(s,ν)$,其中单数集$ s $是封闭式套装,围绕$ u_t(x)$ diverge的本地积分为$ t \ to 0 $,而$ν$是radon量度,它具有$ u_t(x)$ $ u_t(x)$ s $ s $ s^c $ as $ as us s^c $ as as as as as as as as as as as as as as as as as as a f t t t的极限行为。我们在称为饱和度的参数中表征了具有初始跟踪$(s,0)$的解决方案的存在,$ d_ {sat} = d+α(1-β^{ - 1})$。对于$ s \ neq r^d $,带有$ dim(s)> d_ {sat} $(在某些情况下$ dim(s)= d_ {sat} $),我们证明不存在此类解决方案。当$ dim(s)<d_ {sat} $和$ s $是满足均匀密度条件的度量的紧凑支持时,我们证明存在解决方案。
We consider the density $X_t(x)$ of the critical $(α,β)$-superprocess in $R^d$ with $α\in (0,2)$ and $β<\frac αd$. A recent result from PDE implies a dichotomy for the density: for fixed $x$, $X_t(x)>0$ a.s. on $\{X_t\neq 0\}$ if and only if $β\leq β^*(α) = \fracα{d+α}$. We strengthen this and show that in the continuous density regime, $β< β^*(α)$ implies that the density function is strictly positive a.s. on $\{X_t\neq 0\}$. We then give close to sharp conditions on a measure $μ$ such that $μ(X_t):=\int X_t(x)μ(dx)>0$ a.s. on $\{X_t\neq 0 \}$. Our characterization is based on the size of $supp(μ)$, in the sense of Hausdorff measure and dimension. For $s \in [0,d]$, if $β\leq β^*(α,s)=\fracα{d-s+α}$ and $supp(μ)$ has positive $x^s$-Hausdorff measure, then $μ(X_t)>0$ a.s. on $\{X_t\neq 0\}$; and when $β> β^*(α,s)$, if $μ$ satisfies a uniform lower density condition which implies $dim(supp(μ)) < s$, then $P(μ(X_t)=0|X_t\neq 0)>0$. We also give new result for the fractional PDE $\partial_t u(t,x) = -(-Δ)^{α/2}u(t,x)-u(t,x)^{1+β}$ with domain $(t,x)\in (0,\infty)\times R^d$. The initial trace of a solution $u_t(x)$ is a pair $(S,ν)$, where the singular set $S$ is a closed set around which local integrals of $u_t(x)$ diverge as $t \to 0$, and $ν$ is a Radon measure which gives the limiting behaviour of $u_t(x)$ on $S^c$ as $t\to 0$. We characterize the existence of solutions with initial trace $(S,0)$ in terms of a parameter called the saturation dimension, $d_{sat}=d+α(1-β^{-1})$. For $S\neq R^d$ with $dim(S)> d_{sat}$ (and in some cases $dim(S)=d_{sat}$) we prove that no such solution exists. When $dim(S)<d_{sat}$ and $S$ is the compact support of a measure satisfying a uniform lower density condition, we prove that a solution exists.