论文标题

衡量可计数鲍尔等效关系的降低性

Measure reducibility of countable Borel equivalence relations

论文作者

Conley, Clinton T., Miller, Benjamin D.

论文摘要

我们表明,在估计降低的$ \ mathbb {e} _0 $降低的情况下,可计数的等效关系的每个基础都是无法数量的,从而排除了Glimm-effros二分法的天然概括。我们还使用比以前使用的参数要简单得多,将有关衡量性层次结构的抽象结构的许多已知结果推向其基础。

We show that every basis for the countable Borel equivalence relations strictly above $\mathbb{E}_0$ under measure reducibility is uncountable, thereby ruling out natural generalizations of the Glimm-Effros dichotomy. We also push many known results concerning the abstract structure of the measure reducibility hierarchy to its base, using arguments substantially simpler than those previously employed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源