论文标题

无插件近端算法,用于反向成像问题

Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems

论文作者

Wei, Kaixuan, Aviles-Rivero, Angelica, Liang, Jingwei, Fu, Ying, Schönlieb, Carola-Bibiane, Huang, Hua

论文摘要

插入式播放(PNP)是一个非凸框架,将ADMM或其他近端算法与高级Denoiser先验相结合。最近,PNP取得了巨大的经验成功,尤其是在基于深度学习的DeNoiser的整合过程中。但是,基于PNP的方法的关键问题是它们需要进行手动参数调整。在成像条件和不同场景内容方面,有必要在高差异上获得高质量的结果。在这项工作中,我们提出了一种无调的PNP近端算法,该算法可以自动确定内部参数,包括惩罚参数,去核强度和终端时间。我们方法的关键部分是开发一个自动搜索参数的策略网络,可以通过混合模型和基于模型的深度强化学习有效地学习。我们通过数值和视觉实验证明,学到的政策可以自定义不同状态的不同参数,并且通常比现有的手工标准更有效。此外,我们讨论了被插入的Denoisers的实际考虑,这些考虑与我们学到的政策收益最先进的结果一起。这在线性和非线性示例逆成像问题上都普遍存在,尤其是我们在压缩传感MRI和相位检索方面表现出了令人鼓舞的结果。

Plug-and-play (PnP) is a non-convex framework that combines ADMM or other proximal algorithms with advanced denoiser priors. Recently, PnP has achieved great empirical success, especially with the integration of deep learning-based denoisers. However, a key problem of PnP based approaches is that they require manual parameter tweaking. It is necessary to obtain high-quality results across the high discrepancy in terms of imaging conditions and varying scene content. In this work, we present a tuning-free PnP proximal algorithm, which can automatically determine the internal parameters including the penalty parameter, the denoising strength and the terminal time. A key part of our approach is to develop a policy network for automatic search of parameters, which can be effectively learned via mixed model-free and model-based deep reinforcement learning. We demonstrate, through numerical and visual experiments, that the learned policy can customize different parameters for different states, and often more efficient and effective than existing handcrafted criteria. Moreover, we discuss the practical considerations of the plugged denoisers, which together with our learned policy yield state-of-the-art results. This is prevalent on both linear and nonlinear exemplary inverse imaging problems, and in particular, we show promising results on Compressed Sensing MRI and phase retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源