论文标题

游泳者陷入漩涡晶格中

Trapping of swimmers in a vortex lattice

论文作者

Berman, S. A., Mitchell, K. A.

论文摘要

我们检查了刚性,椭圆形的游泳者的运动,并在二维中经历了稳定的涡旋流动。在空间周期性涡流阵列中对游泳者的数值模拟显示出一系列可能的行为,包括捕获单个涡流中的捕获和运动性诱导的扩散在许多涡旋中。尽管捕获概率以足够高的游泳速度消失,但我们发现随着这种关键的游泳速度接近,它表现出令人惊讶的大振荡。令人惊讶的是,在更高的游泳速度下,我们发现垂直于伸长方向游泳的游泳者会再次被困。为了解释这种复杂的行为,我们研究了潜在的游泳器相空间几何形状。我们确定游泳运动员方程的固定点和周期轨道,这些运动员方程调节游泳者在单个涡流中捕获。对于低至中间的游泳速度,我们发现一个稳定的周期性轨道被不变的托里(Tori)包围,形成了游泳者的运输屏障,并可以将它们捕获到单个涡流中。对于接近最大流体速度的游泳速度,我们发现垂直游泳者可以被渐近稳定的固定点捕获。稳定的周期轨道和固定点的分叉分析解释了随着游泳器的速度和形状的变化,游泳者捕获的复杂而非单调的崩溃和重新出现。

We examine the motion of rigid, ellipsoidal swimmers subjected to a steady vortex flow in two dimensions. Numerical simulations of swimmers in a spatially periodic array of vortices reveal a range of possible behaviors, including trapping inside a single vortex and motility-induced diffusion across many vortices. While the trapping probability vanishes at a sufficiently high swimming speed, we find that it exhibits surprisingly large oscillations as this critical swimming speed is approached. Strikingly, at even higher swimming speeds, we find swimmers that swim perpendicular to their elongation direction can again become trapped. To explain this complex behavior, we investigate the underlying swimmer phase-space geometry. We identify the fixed points and periodic orbits of the swimmer equations of motion that regulate swimmer trapping inside a single vortex cell. For low to intermediate swimming speeds, we find that a stable periodic orbit surrounded by invariant tori forms a transport barrier to swimmers and can trap them inside individual vortices. For swimming speeds approaching the maximum fluid speed, we find instead that perpendicular swimmers can be trapped by asymptotically stable fixed points. A bifurcation analysis of the stable periodic orbit and the fixed points explains the complex and non-monotonic breakdown and reemergence of swimmer trapping as the swimmer speed and shape are varied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源