论文标题
弯曲的螺旋胆固醇中弯曲弹性常数的温度依赖性
Temperature dependence of bend elastic constant in oblique helicoidal cholesterics
论文作者
论文摘要
液晶的弹性模量,称为Frank常数,对于理解这些材料的基本特性以及其应用设计至关重要。尽管有许多方法可以在列前阶段测量坦率的常数,但由于胆固醇的螺旋结构使这些方法不足,因此对nematic的手性版本的弹性常数鲜为人知。在这里,我们提出了一种测量胆固醇的弯曲模量$ k_ {33} $的技术,该技术基于在倾斜的螺旋性$ ch_ {oh} $胆汁灰质结构上的光的电气反射。 $ k_ {33} $通常小于0.6 pn,显示非单调温度依赖性,在过渡到扭曲阶段的过渡附近略有增加。 $ k_ {33} $在很大程度上取决于分子成分。特别是,含有柔性二聚体1',7''' - bis(4-甲基联苯基-4'-yyl)项(CB7CB)和类似杆状的分子(例如戊巴氯苯基苯基(5cb))的手性混合物显示出$ k_ {33} $ 5倍的混合物,纯度是$ k_ {33} $ pul c $ k_ {33} $ c {33} $ c {33} $ c {33} $ c {33}带有手性掺杂剂的CB7CB。此外,用手性代理掺杂的CB11CB中的$ k_ {33} $明显小于类似掺杂的CB7CB中的$ k_ {33} $,这由CB11CB中的更长的灵活链接解释。该提出的技术允许直接确定分子组成,分子结构和分子手性如何影响手性液晶的弹性特性。
Elastic moduli of liquid crystals, known as Frank constants, are of quintessential importance for understanding fundamental properties of these materials and for the design of their applications. Although there are many methods to measure the Frank constants in the nematic phase, little is known about the elastic constants of the chiral version of the nematic, the so-called cholesteric liquid crystal, since the helicoidal structure of the cholesteric renders these methods inadequate. Here we present a technique to measure the bend modulus $K_{33}$ of cholesterics that is based on the electrically tunable reflection of light at an oblique helicoidal $Ch_{OH}$ cholesteric structure. $K_{33}$ is typically smaller than 0.6 pN, showing a non-monotonous temperature dependence with a slight increase near the transition to the twist-bend phase. $K_{33}$ depends strongly on the molecular composition. In particular, chiral mixtures that contain the flexible dimer 1'',7''-bis(4-cyanobiphenyl-4'-yl) heptane (CB7CB) and rod-like molecules such as pentylcyanobiphenyl (5CB) show a $K_{33}$ value that is 5 times smaller than $K_{33}$ of pure CB7CB or of mixtures of CB7CB with chiral dopants. Furthermore, $K_{33}$ in CB11CB doped with a chiral agent is noticeably smaller than $K_{33}$ in a similarly doped CB7CB which is explained by the longer flexible link in CB11CB. The proposed technique allows a direct in-situ determination of how the molecular composition, molecular structure and molecular chirality affect the elastic properties of chiral liquid crystals.