论文标题

量化声音振动的干涉信号强度监视

Quantifying Interference-Assisted Signal Strength Surveillance of Sound Vibrations

论文作者

Abrar, Alemayehu Solomon, Patwari, Neal, Kasera, Sneha Kumar

论文摘要

恶意攻击者可以通过控制这些互联网设备来捕获接收的信号强度(RSS)测量,并对人的环境中的生命体征,活动和声音进行监视。本文考虑了一个攻击者,他正在寻找RSS的细微变化,以便窃听声音振动。对手面临的挑战在于,声音振动会导致RSS的幅度变化非常低,并且RSS通常以明显更大的步长进行量化。本文对攻击者的监视性能有所贡献,这是RSS步长大小和采样频率的函数,以便设计师可以理解其关系。我们的界限认为,鲜为人知的违反直觉的事实是,对手可以通过使某些设备传输以将干扰功率添加到RSS测量中来改善其正弦参数估计。我们通过实验证明了这一能力。如我们所示,对于典型的收发器,RSS监视攻击者可以以显着的精度监视声音振动。需要采取新的缓解策略来防止RSS监视攻击。

A malicious attacker could, by taking control of internet-of-things devices, use them to capture received signal strength (RSS) measurements and perform surveillance on a person's vital signs, activities, and sound in their environment. This article considers an attacker who looks for subtle changes in the RSS in order to eavesdrop sound vibrations. The challenge to the adversary is that sound vibrations cause very low amplitude changes in RSS, and RSS is typically quantized with a significantly larger step size. This article contributes a lower bound on an attacker's monitoring performance as a function of the RSS step size and sampling frequency so that a designer can understand their relationship. Our bound considers the little-known and counter-intuitive fact that an adversary can improve their sinusoidal parameter estimates by making some devices transmit to add interference power into the RSS measurements. We demonstrate this capability experimentally. As we show, for typical transceivers, the RSS surveillance attacker can monitor sound vibrations with remarkable accuracy. New mitigation strategies will be required to prevent RSS surveillance attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源