论文标题

用热运动的分子聚集体中的激发传输

Excitation Transport in Molecular Aggregates with thermal motion

论文作者

Pant, R., Wüster, S.

论文摘要

由于偶极 - 偶极相互作用,分子聚集体可以在某些条件下在大距离内运输电子激发能。在这里,我们探索整个单体的热运动在多大程度上可以指导或增强这种激发传输。该运动诱导骨料几何形状的变化,因此会改变激子状态。在某些条件下,激发能可以通过一定的激子特征态通过绝热的骨料运输。尽管这种运输总是比通过偶极 - 偶极相互作用的直接迁移慢,但我们表明,在存在现场能量障碍的情况下,通过运动运输可以产生更高的运输效率。为此,我们考虑了两个简单的分子运动模型:(i)单体在其分子间结合电位内沿聚集方向的纵向振动,以及(ii)平面单体在平面正交与聚集方向的扭转运动。所使用的参数和潜在形状与染料 - 分子骨料有关。我们采用了一种量子古典方法,其中分子通过简化的经典分子动力学移动,而激发传输则使用Schrödinger的方程进行机械处理量子。对于这两种模型,我们都会发现该运动可以增强激发传输的参数状态,但是由于典型的Morse类型分子间电位有限的运动范围有限,因此对于扭转方案而言,它们更为现实。我们最终表明,运输增强可以与绝热量子动力学相关。通过绝热运动增强这种运输似乎是对抗疾病的激发子捕获的有用资源。

Molecular aggregates can under certain conditions transport electronic excitation energy over large distances due to dipole-dipole interactions. Here, we explore to what extent thermal motion of entire monomers can guide or enhance this excitation transport. The motion induces changes of aggregate geometry and hence modifies exciton states. Under certain conditions, excitation energy can thus be transported by the aggregate adiabatically, following a certain exciton eigenstate. While such transport is always slower than direct migration through dipole-dipole interactions, we show that transport through motion can yield higher transport efficiencies in the presence of on-site energy disorder than the static counterpart. For this we consider two simple models of molecular motion: (i) longitudinal vibrations of the monomers along the aggregation direction within their inter-molecular binding potential and (ii) torsional motion of planar monomers in a plane orthogonal to the aggregation direction. The parameters and potential shapes used are relevant to dye-molecule aggregates. We employ a quantum-classical method, in which molecules move through simplified classical molecular dynamics, while the excitation transport is treated quantum mechanically using Schrödinger's equation. For both models we find parameter regimes in which the motion enhances excitation transport, however these are more realistic for the torsional scenario, due to the limited motional range in a typical Morse type inter-molecular potential. We finally show that the transport enhancement can be linked to adiabatic quantum dynamics. This transport enhancement through adiabatic motion appears a useful resource to combat exciton trapping by disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源