论文标题
机器学习辅助载体恢复在连续可变的量子密钥分布中
Machine learning aided carrier recovery in continuous-variable quantum key distribution
论文作者
论文摘要
连续变量量子键分布(CV-QKD)系统的秘密密钥速率受到过多噪声的限制。用参考或试点信号实现的所有现代CV-QKD系统的典型关键问题和独立的本地振荡器正在控制发射器和接收器所产生的频率和相位噪声产生的多余噪声。因此,准确的相位估计和补偿,即所谓的载体回收,是CV-QKD的关键子系统。在这里,我们探讨了基于贝叶斯推断的机器学习框架的实现,即无用的卡尔曼过滤器(UKF),以估算相位噪声并将其与标准参考方法进行比较。在20 km的纤维光线链路上获得的实验结果表明,即使在低驾驶机功率下,UKF也可以确保过量噪声非常低。在广泛的试点信号与噪声比率上,测量值表现出较低的方差和高稳定性。这可能使具有低实施复杂性的CV-QKD系统可以无缝地在不同的传输线上无缝。
The secret key rate of a continuous-variable quantum key distribution (CV-QKD) system is limited by excess noise. A key issue typical to all modern CV-QKD systems implemented with a reference or pilot signal and an independent local oscillator is controlling the excess noise generated from the frequency and phase noise accrued by the transmitter and receiver. Therefore accurate phase estimation and compensation, so-called carrier recovery, is a critical subsystem of CV-QKD. Here, we explore the implementation of a machine learning framework based on Bayesian inference, namely an unscented Kalman filter (UKF), for estimation of phase noise and compare it to a standard reference method. Experimental results obtained over a 20 km fibre-optic link indicate that the UKF can ensure very low excess noise even at low pilot powers. The measurements exhibited low variance and high stability in excess noise over a wide range of pilot signal to noise ratios. This may enable CV-QKD systems with low implementation complexity which can seamlessly work on diverse transmission lines.