论文标题
模式形状变化的不确定性量化利用多级多响应高斯过程
Uncertainty Quantification of Mode Shape Variation Utilizing Multi-Level Multi-Response Gaussian Process
论文作者
论文摘要
模式形状信息在确定结构振动响应的空间模式中起着至关重要的作用。模式形状的不确定性量化,即当结构受到不确定性时预测模式形状变化,可以为可靠的设计和控制提供指导。然而,计算效率是一个具有挑战性的问题。直接蒙特卡洛模拟不太可能是可行的,特别是对于具有大量自由度的复杂结构。在这项研究中,我们开发了一个基于高斯过程元模型架构的新概率框架,以分析模式形状变化。为了加快用于元模型建立的输入数据集的生成,采用了多层策略,可以将大量的低保真数据与从订单减少分析中获得的大量低保真数据与少量由高维全有限元分析产生的高效率数据。为了利用模式形状空间分布的固有关系,合并了多个响应策略,以同时预测不同位置的模式形状变化。这些产生多级,多响应的高斯过程,可以有效,准确地量化模式形状变化的结构不确定性的影响。进行全面的案例研究进行演示和验证。
Mode shape information play the essential role in deciding the spatial pattern of vibratory response of a structure. The uncertainty quantification of mode shape, i.e., predicting mode shape variation when the structure is subjected to uncertainty, can provide guidance for robust design and control. Nevertheless, computational efficiency is a challenging issue. Direct Monte Carlo simulation is unlikely to be feasible especially for a complex structure with large number of degrees of freedom. In this research, we develop a new probabilistic framework built upon Gaussian process meta-modeling architecture to analyze mode shape variation. To expedite the generation of input dataset for meta-model establishment, a multi-level strategy is adopted which can blend a large amount of low-fidelity data acquired from order-reduced analysis with a small amount of high-fidelity data produced by high-dimensional full finite element analysis. To take advantage of the intrinsic relation of spatial distribution of mode shape, a multi-response strategy is incorporated to predict mode shape variation at different locations simultaneously. These yield a multi-level, multi-response Gaussian process that can efficiently and accurately quantify the effect of structural uncertainty to mode shape variation. Comprehensive case studies are carried out for demonstration and validation.