论文标题

对预测过程分析中深度学习的可解释性技术的调查

An Investigation of Interpretability Techniques for Deep Learning in Predictive Process Analytics

论文作者

Moreira, Catarina, Sindhgatta, Renuka, Ouyang, Chun, Bruza, Peter, Wichert, Andreas

论文摘要

本文探讨了医学决策文献中两种最成功的学习算法的可解释性技术:深度神经网络和随机森林。我们将这些算法应用于包含有关癌症患者的信息的真实医学数据集,鉴于他们的医疗活动记录集,我们学习了试图预测患者癌症类型的模型。 我们使用长期短期深层神经网络和随机森林探索了基于神经网络架构的不同算法。由于越来越需要为决策者对黑匣子预测的逻辑的理解提供理解,因此我们还探索了为这些分类器提供解释的不同技术。在其中一种技术中,我们拦截了这些神经网络的一些隐藏层,并使用了自动编码器,以了解隐藏层中输入的表示是什么。在另一种情况下,我们围绕随机森林的预测研究了一个可解释的模型。 结果表明,围绕该模型的预测,在本地学习可解释的模型,从而对算法为何做出一些决定有了更高的了解。使用本地和线性模型有助于确定用于预测特定实例或数据点的功能。我们看到了一些用于预测的独特功能,这些功能可提供有关癌症类型的有用见解,以及无法概括的特征。此外,使用自动编码器的结构化深度学习方法还提供了有意义的预测见解,从而确定了与患者不同类型癌症的非线性群集通讯。

This paper explores interpretability techniques for two of the most successful learning algorithms in medical decision-making literature: deep neural networks and random forests. We applied these algorithms in a real-world medical dataset containing information about patients with cancer, where we learn models that try to predict the type of cancer of the patient, given their set of medical activity records. We explored different algorithms based on neural network architectures using long short term deep neural networks, and random forests. Since there is a growing need to provide decision-makers understandings about the logic of predictions of black boxes, we also explored different techniques that provide interpretations for these classifiers. In one of the techniques, we intercepted some hidden layers of these neural networks and used autoencoders in order to learn what is the representation of the input in the hidden layers. In another, we investigated an interpretable model locally around the random forest's prediction. Results show learning an interpretable model locally around the model's prediction leads to a higher understanding of why the algorithm is making some decision. Use of local and linear model helps identify the features used in prediction of a specific instance or data point. We see certain distinct features used for predictions that provide useful insights about the type of cancer, along with features that do not generalize well. In addition, the structured deep learning approach using autoencoders provided meaningful prediction insights, which resulted in the identification of nonlinear clusters correspondent to the patients' different types of cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源