论文标题

对抗对自动分散轻巧群的影响

Adversarial Impacts on Autonomous Decentralized Lightweight Swarms

论文作者

Wolf, Shaya, Cooley, Rafer, Borowczak, Mike

论文摘要

无人驾驶汽车(UAV)和无人接地车辆(UGV)的尺寸和成本降低使使用无人自动驾驶汽车的群来完成各种任务。通过利用蜂群行为,可以有效地完成协调的任务,同时最大程度地减少人均计算要求。一些无人机依靠分散的方案,这些方案在整个群体中都表现出紧急行为。虽然完全分散的算法消除了明显的攻击媒介,但他们对外部影响的敏感性却较少。这项工作调查了可能损害自主群体功能的影响,导致危险情况和级联脆弱性。当一群人负责涉及人类安全或健康的任务时,外部影响可能会带来严重的后果。这项工作中的对抗群利用了一个嵌入在先前定义的自主群体的分散运动算法中的攻击向量,该算法旨在创建一个外围哨兵。各种模拟证实了对抗群捕获大量部分(6-23%)的能力。

The decreased size and cost of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has enabled the use of swarms of unmanned autonomous vehicles to accomplish a variety of tasks. By utilizing swarming behaviors, it is possible to efficiently accomplish coordinated tasks while minimizing per-drone computational requirements. Some drones rely on decentralized protocols that exhibit emergent behavior across the swarm. While fully decentralized algorithms remove obvious attack vectors their susceptibility to external influence is less understood. This work investigates the influences that can compromise the functionality of an autonomous swarm leading to hazardous situations and cascading vulnerabilities. When a swarm is tasked with missions involving the safety or health of humans, external influences could have serious consequences. The adversarial swarm in this work utilizes an attack vector embedded within the decentralized movement algorithm of a previously defined autonomous swarm designed to create a perimeter sentry swarm. Various simulations confirm the adversarial swarm's ability to capture significant portions (6-23%) of the perimeter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源