论文标题

贪婪的政策搜索:可学习测试时间增加的简单基准

Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation

论文作者

Molchanov, Dmitry, Lyzhov, Alexander, Molchanova, Yuliya, Ashukha, Arsenii, Vetrov, Dmitry

论文摘要

测试时间数据增强$ - $ - $平均在多个增强数据样本$的样本中对机器学习模型的预测 - $是一种广泛使用的技术,可改善预测性能。尽管近年来已经出现了许多高级可学习的数据增强技术,但它们集中在培训阶段。此类技术不一定对于测试时间的增加是最佳的,并且可以超过由简单的农作物和翻转组成的策略。本文的主要目的是证明测试时间增加政策也可以成功地学习。我们介绍了贪婪的政策搜索(GPS),这是一种简单但高性能的方法,用于学习测试时间增强政策。我们证明,使用GPS学到的增强策略在图像分类问题上实现了卓越的预测性能,提供更好的内域不确定性估计,并提高域转移的鲁棒性。

Test-time data augmentation$-$averaging the predictions of a machine learning model across multiple augmented samples of data$-$is a widely used technique that improves the predictive performance. While many advanced learnable data augmentation techniques have emerged in recent years, they are focused on the training phase. Such techniques are not necessarily optimal for test-time augmentation and can be outperformed by a policy consisting of simple crops and flips. The primary goal of this paper is to demonstrate that test-time augmentation policies can be successfully learned too. We introduce greedy policy search (GPS), a simple but high-performing method for learning a policy of test-time augmentation. We demonstrate that augmentation policies learned with GPS achieve superior predictive performance on image classification problems, provide better in-domain uncertainty estimation, and improve the robustness to domain shift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源