论文标题

分布强劲的贝叶斯优化

Distributionally Robust Bayesian Optimization

论文作者

Kirschner, Johannes, Bogunovic, Ilija, Jegelka, Stefanie, Krause, Andreas

论文摘要

分销转移的鲁棒性是当代机器学习的主要挑战之一。达到这种鲁棒性是分布鲁棒优化的目标,它寻求解决优化问题的解决方案,该优化问题在不受控制的协变量的指定分布变化下是最坏的。在本文中,我们研究了通过最大平均差异(MMD)测量分布变化时的问题。为了设置零阶噪声优化,我们提出了一种新颖的分布在稳健的贝叶斯优化算法(DRBO)。事实证明,我们的算法在各种环境中获得了下线稳健的后悔,这些遗憾在观察到不确定的协变量方面有所不同。我们证明了我们方法在合成和现实世界基准上的强大性能。

Robustness to distributional shift is one of the key challenges of contemporary machine learning. Attaining such robustness is the goal of distributionally robust optimization, which seeks a solution to an optimization problem that is worst-case robust under a specified distributional shift of an uncontrolled covariate. In this paper, we study such a problem when the distributional shift is measured via the maximum mean discrepancy (MMD). For the setting of zeroth-order, noisy optimization, we present a novel distributionally robust Bayesian optimization algorithm (DRBO). Our algorithm provably obtains sub-linear robust regret in various settings that differ in how the uncertain covariate is observed. We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源