论文标题
快速量化人脑中的白质断开
Rapid Quantification of White Matter Disconnection in the Human Brain
论文作者
论文摘要
估计每年有500万个新的中风幸存者,并且迅速衰老的人口遭受高强度和假定的血管起源疾病的影响,这些血管起源会影响白质并导致认知能力下降,至关重要的是,我们必须了解白质损害对脑结构和行为的影响至关重要。当前评估病变影响的技术仅考虑位置,类型和程度,同时忽略了受影响区域如何连接到大脑其余部分。区域脑功能是局部结构及其连通性的产物。因此,获得白质断开图是一个关键步骤,可以帮助我们预测患者表现出的行为缺陷。在目前的工作中,我们引入了一种新的实用方法,用于计算仅需要中等计算资源的基于病变的白质断开图。我们通过创建健康成年人大脑的扩散拖拉模型并评估小区域之间的连通性来实现这一目标。然后,我们通过将患者的病变投射到其中来计算预测的白质断开来中断这些连通性模型。可以使用基于单一核心CPU的计算在大约35秒内为单个患者计算量化的断开图。相比之下,使用MRTRIX3提供的其他工具进行的类似量化需要5.47分钟。
With an estimated five million new stroke survivors every year and a rapidly aging population suffering from hyperintensities and diseases of presumed vascular origin that affect white matter and contribute to cognitive decline, it is critical that we understand the impact of white matter damage on brain structure and behavior. Current techniques for assessing the impact of lesions consider only location, type, and extent, while ignoring how the affected region was connected to the rest of the brain. Regional brain function is a product of both local structure and its connectivity. Therefore, obtaining a map of white matter disconnection is a crucial step that could help us predict the behavioral deficits that patients exhibit. In the present work, we introduce a new practical method for computing lesion-based white matter disconnection maps that require only moderate computational resources. We achieve this by creating diffusion tractography models of the brains of healthy adults and assessing the connectivity between small regions. We then interrupt these connectivity models by projecting patients' lesions into them to compute predicted white matter disconnection. A quantified disconnection map can be computed for an individual patient in approximately 35 seconds using a single core CPU-based computation. In comparison, a similar quantification performed with other tools provided by MRtrix3 takes 5.47 minutes.