论文标题
使用Bose-Einstein冷凝物检测Schrödinger方程中的对数非线性
Detecting a logarithmic nonlinearity in the Schrödinger equation using Bose-Einstein condensates
论文作者
论文摘要
我们研究了对数非线性在Schrödinger方程(SE)中对自由扩展的Bose-Einstein冷凝物(BEC)动力学的影响。对数非线性是对SE的最早提出的非线性扩展之一,该扩展强调了线性理论的重要物理特性的保护,例如:非互动状态的可分离性。使用这种可分离性,我们将其纳入了遵守对数毛皮件方程的BEC的描述中。我们使用变分和数值方法研究了此类BEC的动力学,并发现,使用诸如Delta Kick Commimation之类的实验技术,在微重力平台上使用的延长自由下落时间的实验能够降低至少一阶的对数非线性的强度。
We study the effect of a logarithmic nonlinearity in the Schrödinger equation (SE) on the dynamics of a freely expanding Bose-Einstein condensate (BEC). The logarithmic nonlinearity was one of the first proposed nonlinear extensions to the SE which emphasized the conservation of important physical properties of the linear theory, e.g.: the separability of noninteracting states. Using this separability, we incorporate it into the description of a BEC obeying a logarithmic Gross-Pittaevskii equation. We investigate the dynamics of such BECs using variational and numerical methods and find that, using experimental techniques like delta kick collimation, experiments with extended free-fall times as available on microgravity platforms could be able to lower the bound on the strength of the logarithmic nonlinearity by at least one order of magnitude.