论文标题
关于神经网络的决策界限:热带几何观点
On the Decision Boundaries of Neural Networks: A Tropical Geometry Perspective
论文作者
论文摘要
这项工作解决了通过分段线性非线性激活来表征和理解神经网络的决策界限的问题。我们使用热带几何形状,这是代数几何区域中的新开发项目,以表征形式的简单网络(Agchine,relu,offine)的决策边界。我们的主要发现是,决策边界是热带超曲面的子集,该子集与由两个分子的凸壳形成的多层密切相关。这些地位的生成器是网络参数的函数。这种几何表征为三个任务提供了新的观点。 (i)我们对彩票票证假设提出了一个新的热带观点,在这里我们查看了不同初始化对网络决策边界热带几何表示的影响。 (ii)此外,我们提出了新的基于热带的优化重新策略,直接影响网络修剪任务的网络决策界限。 (iii)最后,我们从热带意义上讨论了对抗攻击产生的重新印象。我们证明,可以通过扰动网络中的一组参数来扰动特定的决策边界,在新的热带环境中构建对手。
This work tackles the problem of characterizing and understanding the decision boundaries of neural networks with piecewise linear non-linearity activations. We use tropical geometry, a new development in the area of algebraic geometry, to characterize the decision boundaries of a simple network of the form (Affine, ReLU, Affine). Our main finding is that the decision boundaries are a subset of a tropical hypersurface, which is intimately related to a polytope formed by the convex hull of two zonotopes. The generators of these zonotopes are functions of the network parameters. This geometric characterization provides new perspectives to three tasks. (i) We propose a new tropical perspective to the lottery ticket hypothesis, where we view the effect of different initializations on the tropical geometric representation of a network's decision boundaries. (ii) Moreover, we propose new tropical based optimization reformulations that directly influence the decision boundaries of the network for the task of network pruning. (iii) At last, we discuss the reformulation of the generation of adversarial attacks in a tropical sense. We demonstrate that one can construct adversaries in a new tropical setting by perturbing a specific set of decision boundaries by perturbing a set of parameters in the network.