论文标题
双向皮肤镜面特征学习和皮肤病变细分的多尺度一致决策融合
Bi-directional Dermoscopic Feature Learning and Multi-scale Consistent Decision Fusion for Skin Lesion Segmentation
论文作者
论文摘要
从皮肤镜图像中准确分割皮肤病变是计算机辅助诊断黑色素瘤的关键部分。由于以下事实,这是具有挑战性的,因为来自不同患者的皮肤镜图像具有不可忽略的病变变异,这会在解剖结构学习和一致的皮肤病变描述中造成困难。在本文中,我们提出了一种新颖的双向皮肤镜特征学习(BIDFL)框架,以模拟皮肤病变及其信息性环境之间的复杂相关性。通过控制通过两个互补方向的特征信息,可以实现基本丰富且歧视性的特征表示。具体来说,我们将BIDFL模块放置在CNN网络的顶部,以增强高级解析性能。此外,我们提出了一个多尺度一致的决策融合(MCDF),能够选择性地关注从多个分类层产生的信息决策。通过分析每个位置决策的一致性,MCDF自动调整了决策的可靠性,因此允许更具洞察力的皮肤病变描述。全面的实验结果表明,该方法对皮肤病变细分的有效性,在两个公开可用的皮肤镜图像数据库上始终如一地实现最先进的性能。
Accurate segmentation of skin lesion from dermoscopic images is a crucial part of computer-aided diagnosis of melanoma. It is challenging due to the fact that dermoscopic images from different patients have non-negligible lesion variation, which causes difficulties in anatomical structure learning and consistent skin lesion delineation. In this paper, we propose a novel bi-directional dermoscopic feature learning (biDFL) framework to model the complex correlation between skin lesions and their informative context. By controlling feature information passing through two complementary directions, a substantially rich and discriminative feature representation is achieved. Specifically, we place biDFL module on the top of a CNN network to enhance high-level parsing performance. Furthermore, we propose a multi-scale consistent decision fusion (mCDF) that is capable of selectively focusing on the informative decisions generated from multiple classification layers. By analysis of the consistency of the decision at each position, mCDF automatically adjusts the reliability of decisions and thus allows a more insightful skin lesion delineation. The comprehensive experimental results show the effectiveness of the proposed method on skin lesion segmentation, achieving state-of-the-art performance consistently on two publicly available dermoscopic image databases.