论文标题
地球磁盘湍流的演变:基于MMS观测的统计研究
Evolution of the Earth's Magnetosheath Turbulence: A statistical study based on MMS observations
论文作者
论文摘要
地球上的磁石由震惊的太阳风组成,是研究从低alfv {é} n马赫数的湍流过渡,$ m_ \ mathrm {a} $,再到高$ m_ \ mathrm {a} $。 NASA的\ textIt {MagnEtosper MultiScale} Missions提供了前所未有的高时间分辨率的磁场和等离子力矩的同时观察,这使我们能够研究磁透明动力学(MHD)和子离子量表的磁盘湍流。根据2015/09到2019/06的1841年MMS-1爆发模式段,获得了磁石湍流的空间演变的全面模式:(1)从亚光区域到侧面,$ m_ \ mathrm {a} $从$ <$ <$ <$ <$> $> $> $ 5增加。与$ m_ \ mathrm {a} $的正相关和负相关。但是,光谱索引与$ M_ \ Mathrm {a} $之间没有明显的相关性。 (2)从弓震到磁磁带,湍流的声音马赫数,$ m _ {\ mathrm {turb}} $,通常从$> $> $> $ 0.4降低到$ <$ <$ <$ <$ 0.1。所有光谱都在MHD尺度上陡峭,并在子离子尺度上扁平,代表与$ M_ \ Mathrm {Turb} $的正/负相关。当接近磁场和速度光谱的磁磁度时,断裂频率增加了0.1 Hz,而密度光谱的断裂频率保持在0.3 Hz。 (3)尽管存在一些差异,但对于准平行和准垂直的磁壳而发现了相似的结果。另外,发现磁盘湍流的空间演化与上游太阳风条件无关,例如星际磁场的Z组件和太阳风速。
Composed of shocked solar wind, the Earth's magnetosheath serves as a natural laboratory to study the transition of turbulence from low Alfv{é}n Mach number, $M_\mathrm{A}$, to high $M_\mathrm{A}$. The simultaneous observations of magnetic field and plasma moments with unprecedented high temporal resolution provided by NASA's \textit{Magnetospheric Multiscale} Mission enable us to study the magnetosheath turbulence at both magnetohydrodynamics (MHD) and sub-ion scales. Based on 1841 burst-mode segments of MMS-1 from 2015/09 to 2019/06, comprehensive patterns of the spatial evolution of magnetosheath turbulences are obtained: (1) from the sub-solar region to the flanks, $M_\mathrm{A}$ increases from $<$ 1 to $>$ 5. At MHD scales, the spectral indices of the magnetic-field and velocity spectra present a positive and negative correlation with $M_\mathrm{A}$. However, no obvious correlations between the spectral indices and $M_\mathrm{A}$ are found at sub-ion scales. (2) from the bow shock to the magnetopause, the turbulent sonic Mach number, $M_{\mathrm{turb}}$, generally decreases from $>$ 0.4 to $<$ 0.1. All spectra steepen at MHD scales and flatten at sub-ion scales, representing a positive/negative correlations with $M_\mathrm{turb}$. The break frequency increases by 0.1 Hz when approaching the magnetopause for the magnetic-field and velocity spectra, while it remains at 0.3 Hz for the density spectra. (3) In spite of some differences, similar results are found for the quasi-parallel and quasi-perpendicular magnetosheath. In addition, the spatial evolution of magnetosheath turbulence is found to be independent of the upstream solar wind conditions, e.g., the Z-component of the interplanetary magnetic field and the solar wind speed.