论文标题

JRMOT:实时3D多对象跟踪器和一个新的大规模数据集

JRMOT: A Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset

论文作者

Shenoi, Abhijeet, Patel, Mihir, Gwak, JunYoung, Goebel, Patrick, Sadeghian, Amir, Rezatofighi, Hamid, Martín-Martín, Roberto, Savarese, Silvio

论文摘要

机器人自主需要自动导航,以感知和跟踪其周围物体和其他代理的运动。此信息使计划和执行强大而安全的轨迹。为了促进这些过程,应在3D笛卡尔空间中感知运动。但是,最近的多目标跟踪(MOT)研究集中在2D RGB视频序列中跟踪人和移动对象。在这项工作中,我们介绍了JRMOT,这是一种新颖的3D MOT系统,该系统将来自RGB图像和3D点云的信息集成到实时,最新的跟踪性能。我们的系统是由最近的神经网络构建的,用于重新识别,2D和3D检测和轨道描述,并在多模式递归卡尔曼体系结构中合并为一个联合概率的数据合作框架。作为我们工作的一部分,我们发布了JRDB数据集,这是一种新颖的大型2D+3D数据集和基准测试,注释了超过200万个盒子和3500时间一致的2D+3D轨迹,遍布54个室内和室外场景。 JRDB包含超过60分钟的数据,包括360度圆柱RGB视频和3D PointClouds在我们用来开发,训练和评估JRMOT的社交环境中。提出的3D MOT系统展示了针对流行的2D跟踪Kitti基准测试的竞争方法的最新性能,并用作我们基准测试的第一个3D跟踪解决方案。对我们的社交机器人Jackrabbot进行的现实机器人测试表明,该系统能够快速和可靠地跟踪多个行人。我们在https://sites.google.com/view/jrmot上提供跟踪器的ROS代码。

Robots navigating autonomously need to perceive and track the motion of objects and other agents in its surroundings. This information enables planning and executing robust and safe trajectories. To facilitate these processes, the motion should be perceived in 3D Cartesian space. However, most recent multi-object tracking (MOT) research has focused on tracking people and moving objects in 2D RGB video sequences. In this work we present JRMOT, a novel 3D MOT system that integrates information from RGB images and 3D point clouds to achieve real-time, state-of-the-art tracking performance. Our system is built with recent neural networks for re-identification, 2D and 3D detection and track description, combined into a joint probabilistic data-association framework within a multi-modal recursive Kalman architecture. As part of our work, we release the JRDB dataset, a novel large scale 2D+3D dataset and benchmark, annotated with over 2 million boxes and 3500 time consistent 2D+3D trajectories across 54 indoor and outdoor scenes. JRDB contains over 60 minutes of data including 360 degree cylindrical RGB video and 3D pointclouds in social settings that we use to develop, train and evaluate JRMOT. The presented 3D MOT system demonstrates state-of-the-art performance against competing methods on the popular 2D tracking KITTI benchmark and serves as first 3D tracking solution for our benchmark. Real-robot tests on our social robot JackRabbot indicate that the system is capable of tracking multiple pedestrians fast and reliably. We provide the ROS code of our tracker at https://sites.google.com/view/jrmot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源