论文标题

使用卷积神经网络从狭窄的带光度调查中限制恒星种群参数

Constraining stellar population parameters from narrow band photometric surveys using convolutional neural networks

论文作者

Liew-Cain, Choong Ling, Kawata, Daisuke, Sanchez-Blazquez, Patricia, Ferreras, Ignacio, Symeonidis, Myrto

论文摘要

即将进行的大区域窄带光度测量(例如J-PAS)将使我们能够同时有效地观察大量星系。但是,分析从这样的大数据中分析星系的空间分辨出恒星种群来研究星系形成和进化史将是一个挑战。我们已经应用了卷积神经网络(CNN)技术,该技术一旦训练就可以计算便宜,可以从类似J-PAS的窄带图像中检索金属性和年龄。使用由CALICA IFU调查创建的模拟J-PAS数据以及每个数据点的年龄和金属性培训的CNN,这些数据是使用CALICA光谱的完整光谱拟合得出的。我们证明我们的CNN模型可以始终如一地从每个J-PAS样光谱能量分布中恢复年龄和金属性。无论其形态如何,都可以准确恢复星系年龄和金属性的径向梯度。但是,证明用于训练神经网络的数据集的多样性对银河恒星种群参数的恢复产生了巨大影响。因此,CNN在限制恒星种群中的未来应用将依赖于涵盖广泛种群参数的样本的质量光谱数据的可用性。

Upcoming large-area narrow band photometric surveys, such as J-PAS, will enable us to observe a large number of galaxies simultaneously and efficiently. However, it will be challenging to analyse the spatially-resolved stellar populations of galaxies from such big data to investigate galaxy formation and evolutionary history. We have applied a convolutional neural network (CNN) technique, which is known to be computationally inexpensive once it is trained, to retrieve the metallicity and age from J-PAS-like narrow band images. The CNN was trained using mock J-PAS data created from the CALIFA IFU survey and the age and metallicity at each data point, which are derived using full spectral fitting to the CALIFA spectra. We demonstrate that our CNN model can consistently recover age and metallicity from each J-PAS-like spectral energy distribution. The radial gradients of the age and metallicity for galaxies are also recovered accurately, irrespective of their morphology. However, it is demonstrated that the diversity of the dataset used to train the neural networks has a dramatic effect on the recovery of galactic stellar population parameters. Hence, future applications of CNNs to constrain stellar populations will rely on the availability of quality spectroscopic data from samples covering a wide range of population parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源