论文标题
COLES:与自学的事件序列的对比度学习
CoLES: Contrastive Learning for Event Sequences with Self-Supervision
论文作者
论文摘要
我们解决了现实世界用户生成的离散事件序列上的自我监督学习问题。自我监督的学习将来自原始数据的复杂信息包含在低维固定长度的矢量表示中,这些信息可以轻松地应用于各种下游机器学习任务中。在本文中,我们提出了一种新方法“ COLES”,该方法将以前用于音频和计算机视觉域的对比度学习适应自我监督的设置中的离散事件序列域。我们根据大型欧洲金融服务公司的交易序列部署了COLES嵌入。 COLES嵌入的用法显着提高了预先存在的模型在下游任务上的性能,并产生了巨大的财务收益,每年以数亿美元的价格衡量。我们还评估了几个公共事件序列数据集的COLE,并表明COLES表示在不同的下游任务上始终超过其他方法。
We address the problem of self-supervised learning on discrete event sequences generated by real-world users. Self-supervised learning incorporates complex information from the raw data in low-dimensional fixed-length vector representations that could be easily applied in various downstream machine learning tasks. In this paper, we propose a new method "CoLES", which adapts contrastive learning, previously used for audio and computer vision domains, to the discrete event sequences domain in a self-supervised setting. We deployed CoLES embeddings based on sequences of transactions at the large European financial services company. Usage of CoLES embeddings significantly improves the performance of the pre-existing models on downstream tasks and produces significant financial gains, measured in hundreds of millions of dollars yearly. We also evaluated CoLES on several public event sequences datasets and showed that CoLES representations consistently outperform other methods on different downstream tasks.