论文标题

特征值问题的第一级最小二乘配方

First order least-squares formulations for eigenvalue problems

论文作者

Bertrand, Fleurianne, Boffi, Daniele

论文摘要

在本文中,我们讨论了与椭圆偏微分方程最小二乘有限元近似相关的操作员的光谱特性。研究并在适当的$ l^2 $错误估计的帮助下研究了离散特征值和特征函数对相应连续特征模的收敛性。证明了先验和后验估计。

In this paper we discuss spectral properties of operators associated with the least-squares finite element approximation of elliptic partial differential equations. The convergence of the discrete eigenvalues and eigenfunctions towards the corresponding continuous eigenmodes is studied and analyzed with the help of appropriate $L^2$ error estimates. A priori and a posteriori estimates are proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源