论文标题

深度学习强度映射观测:组件提取

Deep learning for intensity mapping observations: Component extraction

论文作者

Moriwaki, Kana, Filippova, Nina, Shirasaki, Masato, Yoshida, Naoki

论文摘要

线强度映射(LIM)是研究宇宙大规模结构及其进化的一种新兴观察方法。 LIM不能解析单个来源,而是探测综合线排放的波动。 LIM的一个严重限制是,在观察到的波长下,不同红移的不同发射线的贡献都混淆了。我们提出了一个深度学习应用程序来解决这个问题。我们使用有条件的生成对抗网络从LIM提取指定的信息。我们考虑了一个简单的情况,其中有两个排放线星系。 H $ \rmα$在$ z = 1.3 $处发射星系与[OIII]发射器混淆为$ z = 2.0 $,在单个观察到的波段中,以1.5 $ \rmμ$ m。我们经过30,000个模拟观察图训练的网络能够提取H $ \rmα$发射星系的总强度和空间分布,$ z = 1.3 $。强度峰成功地定位了74%的精度。当我们结合5个网络的结果时,精度将增加到91%。平均强度和功率谱以$ \ sim $ 10%的精度重建。在更广泛的红移范围内提取的星系分布可用于研究宇宙学以及星系形成和进化。

Line intensity mapping (LIM) is an emerging observational method to study the large-scale structure of the Universe and its evolution. LIM does not resolve individual sources but probes the fluctuations of integrated line emissions. A serious limitation with LIM is that contributions of different emission lines from sources at different redshifts are all confused at an observed wavelength. We propose a deep learning application to solve this problem. We use conditional generative adversarial networks to extract designated information from LIM. We consider a simple case with two populations of emission line galaxies; H$\rmα$ emitting galaxies at $z = 1.3$ are confused with [OIII] emitters at $z = 2.0$ in a single observed waveband at 1.5 $\rmμ$m. Our networks trained with 30,000 mock observation maps are able to extract the total intensity and the spatial distribution of H$\rmα$ emitting galaxies at $z = 1.3$. The intensity peaks are successfully located with 74% precision. The precision increases to 91% when we combine the results of 5 networks. The mean intensity and the power spectrum are reconstructed with an accuracy of $\sim$10%. The extracted galaxy distributions at a wider range of redshift can be used for studies on cosmology and on galaxy formation and evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源