论文标题

基于单纯形的施泰纳树实例产生了较大的完整差距

Simplex based Steiner tree instances yield large integrality gaps for the bidirected cut relaxation

论文作者

Vicari, Robert

论文摘要

双向切割放松是bidectioned放松的特征代表($ \ mathrm {\ mathcal {bcr}} $),它是图形中NP-Hard-Hard Stoiner树问题(STP)的NP-Hard-Hard Stoiner Tree问题(STP)。尽管没有基于$ \ mathrm {\ Mathcal {bcr}} $具有近似值比$ 2 $的一般近似算法,但它在整数编程中最喜欢STP的实现,因为在实践中存在非常有效的紧凑型尺寸,因此它具有非常有效的尺寸。 众所周知,$ \ mathrm {\ mathcal {bcr}} $的整体差距最多是$ 2 $,一个长期的开放问题是,整数差距是否少于$ 2 $。到目前为止,最好的下限是$ \ frac {36} {31} \大约1.161 $由Byrka等人证明。 [BGRS13]。根据Chakrabarty等人的工作。 [CDV11]关于通过考虑适当的双重公式将STP实例嵌入简单中,我们通过构建新的一类实例来改进结果,并表明它们的完整性差距至少趋向于$ \ frac {6} {5} {5} = 1.2 $。 更准确地说,我们考虑了等效的LP-RELAXITATION $ \ MATHRM {\ MATHCAL {bcr}}}^{+} $,可以通过加强$ \ Mathrm {\ Mathrm {\ Mathcal {bcr {bcr}} $来获得已知的直接施加式condertex condection word contigion word contemion word contime for tabinection contection and Condection。 $ \ mathrm {\ Mathcal {bcr}} $和$ \ mathrm {\ Mathcal {bcr}}}}^{+} $至少是$ \ frac {6} {5} $。由于$ \ mathrm {\ Mathcal {bcr}}^{ +} $是超图放松的下限($ \ m artrm {\ mathrm {\ mathcal {help}} $),这是另一种众所周知的等效lp-relaxations类别的最佳$(4) + \ ln(4) + \ v byepsmim- forpsmim forpsim forpsim forpim- forepsim forepsim- Byrka等。 [BGRS13]是基于$ \ Mathrm {\ Mathcal {bcr}} $和$ \ Mathrm {\ Mathcal {hyp {help}} $的最坏情况比率的基础。

The bidirected cut relaxation is the characteristic representative of the bidirected relaxations ($\mathrm{\mathcal{BCR}}$) which are a well-known class of equivalent LP-relaxations for the NP-hard Steiner Tree Problem in Graphs (STP). Although no general approximation algorithm based on $\mathrm{\mathcal{BCR}}$ with an approximation ratio better than $2$ for STP is known, it is mostly preferred in integer programming as an implementation of STP, since there exists a formulation of compact size, which turns out to be very effective in practice. It is known that the integrality gap of $\mathrm{\mathcal{BCR}}$ is at most $2$, and a long standing open question is whether the integrality gap is less than $2$ or not. The best lower bound so far is $\frac{36}{31} \approx 1.161$ proven by Byrka et al. [BGRS13]. Based on the work of Chakrabarty et al. [CDV11] about embedding STP instances into simplices by considering appropriate dual formulations, we improve on this result by constructing a new class of instances and showing that their integrality gaps tend at least to $\frac{6}{5} = 1.2$. More precisely, we consider the class of equivalent LP-relaxations $\mathrm{\mathcal{BCR}}^{+}$, that can be obtained by strengthening $\mathrm{\mathcal{BCR}}$ by already known straightforward Steiner vertex degree constraints, and show that the worst case ratio regarding the optimum value between $\mathrm{\mathcal{BCR}}$ and $\mathrm{\mathcal{BCR}}^{+}$ is at least $\frac{6}{5}$. Since $\mathrm{\mathcal{BCR}}^{+}$ is a lower bound for the hypergraphic relaxations ($\mathrm{\mathcal{HYP}}$), another well-known class of equivalent LP-relaxations on which the current best $(\ln(4) + \varepsilon)$-approximation algorithm for STP by Byrka et al. [BGRS13] is based, this worst case ratio also holds for $\mathrm{\mathcal{BCR}}$ and $\mathrm{\mathcal{HYP}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源