论文标题
来自光子门的多个时间顺序的量子叠加的计算优势
Computational advantage from quantum superposition of multiple temporal orders of photonic gates
论文作者
论文摘要
最近已经提出了具有量子叠加原理的电路连接的量子计算模型。在那里,控制量子系统可以一致确定目标量子系统经历$ n $门操作的顺序。此过程称为Quantum $ n $ - 换入,是用于多个信息处理任务的资源。特别是,它为涉及$ n $未知统一门的相位估计问题提供了计算优势 - 比固定阶订单量子电路。但是,相应的算法需要实验上不可行的目标系统维度(超级)指数为$ n $。在这里,我们介绍了一个承诺问题,量子$ n $ - 开关给出了等效的计算加速,而目标系统维度不到$ n $。我们使用最先进的多核光纤技术在实验上证明了$ n $ n $ switch,$ n = 4 $的门在光子极化量子位上作用。这是对超过$ n = 2 $时间顺序的量子叠加的第一个观察,证明了其对有效相位估计的有用性。
Models for quantum computation with circuit connections subject to the quantum superposition principle have been recently proposed. There, a control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations. This process, known as the quantum $N$-switch, is a resource for several information-processing tasks. In particular, it provides a computational advantage -- over fixed-gate-order quantum circuits -- for phase-estimation problems involving $N$ unknown unitary gates. However, the corresponding algorithm requires an experimentally unfeasible target-system dimension (super)exponential in $N$. Here, we introduce a promise problem for which the quantum $N$-switch gives an equivalent computational speed-up with target-system dimension as small as 2 regardless of $N$. We use state-of-the-art multi-core optical-fiber technology to experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit. This is the first observation of a quantum superposition of more than $N=2$ temporal orders, demonstrating its usefulness for efficient phase-estimation.