论文标题

来自光子门的多个时间顺序的量子叠加的计算优势

Computational advantage from quantum superposition of multiple temporal orders of photonic gates

论文作者

Taddei, Márcio M., Cariñe, Jaime, Martínez, Daniel, García, Tania, Guerrero, Nayda, Abbott, Alastair A., Araújo, Mateus, Branciard, Cyril, Gómez, Esteban S., Walborn, Stephen P., Aolita, Leandro, Lima, Gustavo

论文摘要

最近已经提出了具有量子叠加原理的电路连接的量子计算模型。在那里,控制量子系统可以一致确定目标量子系统经历$ n $门操作的顺序。此过程称为Quantum $ n $ - 换入,是用于多个信息处理任务的资源。特别是,它为涉及$ n $未知统一门的相位估计问题提供了计算优势 - 比固定阶订单量子电路。但是,相应的算法需要实验上不可行的目标系统维度(超级)指数为$ n $。在这里,我们介绍了一个承诺问题,量子$ n $ - 开关给出了等效的计算加速,而目标系统维度不到$ n $。我们使用最先进的多核光纤技术在实验上证明了$ n $ n $ switch,$ n = 4 $的门在光子极化量子位上作用。这是对超过$ n = 2 $时间顺序的量子叠加的第一个观察,证明了其对有效相位估计的有用性。

Models for quantum computation with circuit connections subject to the quantum superposition principle have been recently proposed. There, a control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations. This process, known as the quantum $N$-switch, is a resource for several information-processing tasks. In particular, it provides a computational advantage -- over fixed-gate-order quantum circuits -- for phase-estimation problems involving $N$ unknown unitary gates. However, the corresponding algorithm requires an experimentally unfeasible target-system dimension (super)exponential in $N$. Here, we introduce a promise problem for which the quantum $N$-switch gives an equivalent computational speed-up with target-system dimension as small as 2 regardless of $N$. We use state-of-the-art multi-core optical-fiber technology to experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit. This is the first observation of a quantum superposition of more than $N=2$ temporal orders, demonstrating its usefulness for efficient phase-estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源