论文标题

Hodge数字的构造问题模拟积极特征的整数

The construction problem for Hodge numbers modulo an integer in positive characteristic

论文作者

de Bruyn, Remy van Dobben, Paulsen, Matthias

论文摘要

让$ k $成为积极特征的代数封闭场。对于任何整数$ m \ geq 2 $,我们表明,光滑的投射$ k $ - 变化的杂物数可以使用值模元$ m $的任何组合,仅需serre duality。特别是,霍奇数量之间没有非平凡的多项式关系。

Let $k$ be an algebraically closed field of positive characteristic. For any integer $m \geq 2$, we show that the Hodge numbers of a smooth projective $k$-variety can take on any combination of values modulo $m$, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源