论文标题
基于KL Divergence的在线机器学习算法的智能和可重构体系结构
Intelligent and Reconfigurable Architecture for KL Divergence Based Online Machine Learning Algorithm
论文作者
论文摘要
在线机器学习(OML)算法不需要任何培训阶段,并且可以直接在未知的环境中部署。 OML包括多臂强盗(MAB)算法,这些算法可以通过在探索所有手臂的探索与最佳手臂的剥削之间达到平衡来识别几个手臂之间的最佳臂。基于Kullback-Leibler Divergence的上限置信界(KLUCB)是最新的MAB算法,可优化勘探探索 - 探索权衡取舍,但由于强调优化常规,因此很复杂。这限制了其对机器人技术和无线电应用的有用性,这些机器人和无线电应用需要将Klucb与芯片(SOC)上系统上的PHY整合在一起。在本文中,我们通过通过替代合成的计算实现优化常规,而不会损害性能,从而有效地绘制了SOC上的KLUCB算法。所提出的体系结构是动态的重新配置,因此可以在武器上更改武器的数量以及算法的类型。具体而言,经过初步学习后,即时切换到轻量级UCB可提供约10因素的潜伏期和吞吐量。由于学习持续时间取决于未知的ARM统计信息,因此我们提供嵌入在体系结构中的智能来决定切换的瞬间。我们通过逼真的无线应用验证了提出的体系结构的功能正确性和实用性,详细的复杂性分析证明了其在实现智能无线电方面的可行性。
Online machine learning (OML) algorithms do not need any training phase and can be deployed directly in an unknown environment. OML includes multi-armed bandit (MAB) algorithms that can identify the best arm among several arms by achieving a balance between exploration of all arms and exploitation of optimal arm. The Kullback-Leibler divergence based upper confidence bound (KLUCB) is the state-of-the-art MAB algorithm that optimizes exploration-exploitation trade-off but it is complex due to underlining optimization routine. This limits its usefulness for robotics and radio applications which demand integration of KLUCB with the PHY on the system on chip (SoC). In this paper, we efficiently map the KLUCB algorithm on SoC by realizing optimization routine via alternative synthesizable computation without compromising on the performance. The proposed architecture is dynamically reconfigurable such that the number of arms, as well as type of algorithm, can be changed on-the-fly. Specifically, after initial learning, on-the-fly switch to light-weight UCB offers around 10-factor improvement in latency and throughput. Since learning duration depends on the unknown arm statistics, we offer intelligence embedded in architecture to decide the switching instant. We validate the functional correctness and usefulness of the proposed architecture via a realistic wireless application and detailed complexity analysis demonstrates its feasibility in realizing intelligent radios.