论文标题
朝着边界盒免费的全盘细分
Towards Bounding-Box Free Panoptic Segmentation
论文作者
论文摘要
在这项工作中,我们引入了一个新的边界免费网络(BBFNET),以进行全景分割。全景分割是无提案方法的理想问题,因为它已经需要每个像素语义类标签。我们使用此观察结果来利用现成的语义分割网络的类边界,并完善它们以预测实例标签。朝向这个目标,BBFNET预测了粗大的流域水平,并使用它们来检测界限良好的大实例候选。对于较小的实例,其边界不太可靠,BBFNET还通过hough投票,然后是平均移位来预测实例中心,以可靠地检测到小物体。一个新颖的三胞胎损失网络有助于合并零散的实例,同时精炼边界像素。我们的方法与以前的全景分割中的工作不同,这些作品依赖于语义分割网络与基于限制框建议(例如蒙版R-CNN)的计算成本昂贵实例分割网络的组合,以使用Expexpert(MOE)方法来指导实例标签的预测。我们在CityScapes和Microsoft Coco数据集上基准了无提案的方法,并通过其他基于MOE的方法表现出竞争性能,同时表现出优于可可数据集上现有的基于非势力的方法。我们使用不同的语义分割主链显示了我们方法的灵活性。
In this work we introduce a new Bounding-Box Free Network (BBFNet) for panoptic segmentation. Panoptic segmentation is an ideal problem for proposal-free methods as it already requires per-pixel semantic class labels. We use this observation to exploit class boundaries from off-the-shelf semantic segmentation networks and refine them to predict instance labels. Towards this goal BBFNet predicts coarse watershed levels and uses them to detect large instance candidates where boundaries are well defined. For smaller instances, whose boundaries are less reliable, BBFNet also predicts instance centers by means of Hough voting followed by mean-shift to reliably detect small objects. A novel triplet loss network helps merging fragmented instances while refining boundary pixels. Our approach is distinct from previous works in panoptic segmentation that rely on a combination of a semantic segmentation network with a computationally costly instance segmentation network based on bounding box proposals, such as Mask R-CNN, to guide the prediction of instance labels using a Mixture-of-Expert (MoE) approach. We benchmark our proposal-free method on Cityscapes and Microsoft COCO datasets and show competitive performance with other MoE based approaches while outperforming existing non-proposal based methods on the COCO dataset. We show the flexibility of our method using different semantic segmentation backbones.