论文标题
使用超导量子置量子与相反签名的非谐波性相互作用的高对比度ZZ相互作用
High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity
论文作者
论文摘要
为了构建具有超导Qubits的可伸缩量子处理器,ZZ相互作用非常关注,因为其残留物对两分Quition Gate Fidelity具有至关重要的影响。使用ZZ相互作用证明了符合易耐断层量子计算标准的两倍的门。但是,随着量子处理器的性能提高,残留的静态ZZ会成为量子门操作和量子误差校正的性能限制因素。在这里,我们使用具有相反签名的非谐波,transmon Qubit和一个C-shunt Flux Qubit的Qubits介绍了一个超导架构,以解决此问题。从理论上讲,我们证明,通过耦合两种类型的Qubits,可以实现高对比度ZZ相互作用。因此,我们可以控制高/OFF比率的相互作用以实现两分CZ门,或在使用XY相互作用(例如ISWAP GATE)的两个Qubit Gate操作期间抑制它。所提出的体系结构也可以扩展到多Quibit Case。在固定的耦合系统中,与相邻观众量子台相关的ZZ串扰也可能会受到严重抑制。
For building a scalable quantum processor with superconducting qubits, ZZ interaction is of great concern because its residual has a crucial impact to two-qubit gate fidelity. Two-qubit gates with fidelity meeting the criterion of fault-tolerant quantum computationhave been demonstrated using ZZ interaction. However, as the performance of quantum processors improves, the residual static-ZZ can become a performance-limiting factor for quantum gate operation and quantum error correction. Here, we introduce a superconducting architecture using qubits with opposite-sign anharmonicity, a transmon qubit and a C-shunt flux qubit, to address this issue. We theoretically demonstrate that by coupling the two types of qubits, the high-contrast ZZ interaction can be realized. Thus, we can control the interaction with a high on/off ratio to implement two-qubit CZ gates, or suppress it during two-qubit gate operation using XY interaction (e.g., an iSWAP gate). The proposed architecture can also be scaled up to multi-qubit cases. In a fixed coupled system, ZZ crosstalk related to neighboring spectator qubits could also be heavily suppressed.