论文标题

可计数的密集均匀拓扑矢量空间是贝尔空间

A countable dense homogeneous topological vector space is a Baire space

论文作者

Dobrowolski, Tadeusz, Krupski, Mikołaj, Marciszewski, Witold

论文摘要

我们证明,每个包含Cantor套件的副本的同质均匀的均匀均匀拓扑空间都是Baire空间。特别是,每个可计数的密集均匀拓扑矢量空间都是贝尔空间。因此,对于任何非差异的Metrizable Space $ X $,功能空间$ C_P(X)$都不是可计数的密度均匀的。这回答了R.Hernández-Gutiérrez最近提出的一个问题。我们还得出结论,对于任何无限的Banach Space $ e $(双Banach Space $ e^\ ast $),配备了弱拓扑($ e^\ ast $带有弱$^\ ast $ topology)的Space $ e $是不可计算的。我们概括了Hrušák,ZamoraAvilés和Hernández-Gutiérrez的一些结果,这些结果涉及可计数的密集均匀产品。

We prove that every homogeneous countable dense homogeneous topological space containing a copy of the Cantor set is a Baire space. In particular, every countable dense homogeneous topological vector space is a Baire space. It follows that, for any nondiscrete metrizable space $X$, the function space $C_p(X)$ is not countable dense homogeneous. This answers a question posed recently by R. Hernández-Gutiérrez. We also conclude that, for any infinite dimensional Banach space $E$ (dual Banach space $E^\ast$), the space $E$ equipped with the weak topology ($E^\ast$ with the weak$^\ast$ topology) is not countable dense homogeneous. We generalize some results of Hrušák, Zamora Avilés, and Hernández-Gutiérrez concerning countable dense homogeneous products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源